zoukankan      html  css  js  c++  java
  • Miller_Rabin

    #include <iostream>
    #include <string>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #define range(i, a, b) for (int i = a; i <= b; ++i)
    #define rerange(i, a, b) for (int i = a; i >= b; --i)
    #define LL long long
    #define fill(arr, tmp) memset(arr, tmp, sizeof(arr))
    using namespace std;
    const int S = 20;
    LL mult_mod(LL a, LL b, LL c)
    {
        a %= c;
        b %= c;
        long long ret = 0;
        while (b)
        {
            if (b & 1)
            {
                ret += a;
                ret %= c;
            }
            a <<= 1;
            if (a >= c)
                a %= c;
            b >>= 1;
        }
        return ret;
    }
    LL pow_mod(LL x, LL n, LL mod)
    {
        if (n == 1)
            return x % mod;
        x %= mod;
        LL tmp = x;
        LL ret = 1;
        while (n)
        {
            if (n & 1)
                ret = mult_mod(ret, tmp, mod);
            tmp = mult_mod(tmp, tmp, mod);
            n >>= 1;
        }
        return ret;
    }
    bool check(LL a, LL n, LL x, LL t)
    {
        LL ret = pow_mod(a, x, n);
        LL last = ret;
        range(i, 1, t)
        {
            ret = mult_mod(ret, ret, n);
            if (ret == 1 && last != 1 && last != n - 1)
                return true;
            last = ret;
        }
        if (ret != 1)
            return true;
        return false;
    }
    bool Miller_Rabin(LL n)
    {
        if (n < 2)
            return false;
        if (n == 2)
            return true;
        if ((n & 1) == 0)
            return false;
        LL x = n - 1;
        LL t = 0;
        while ((x & 1) == 0)
        {
            x >>= 1;
            t++;
        }
        range(i, 0, S - 1)
        {
            LL a = rand() % (n - 1) + 1;
            if (check(a, n, x, t))
                return false;
        }
        return true;
    }
    LL factor[100];
    int tol;
    LL gcd(LL a, LL b)
    {
        if (a == 0)
            return 1;
        if (a < 0)
            return gcd(-a, b);
        while (b)
        {
            long long t = a % b;
            a = b;
            b = t;
        }
        return a;
    }
    LL Pollard_rho(LL x, LL c)
    {
        LL i = 1, k = 2;
        LL x0 = rand() % x;
        LL y = x0;
        while (1)
        {
            i++;
            x0 = (mult_mod(x0, x0, x) + c) % x;
            LL d = gcd(y - x0, x);
            if (d != 1 && d != x)
                return d;
            if (y == x0)
                return x;
            if (i == k)
            {
                y = x0;
                k += k;
            }
        }
    }
    void findfac(LL n)
    {
        if (Miller_Rabin(n))
        {
            factor[tol++] = n;
            return;
        }
        LL p = n;
        while (p >= n)
            p = Pollard_rho(p, rand() % (n - 1) + 1);
        findfac(p);
        findfac(n / p);
    }
    int main()
    {
        long long n;
        while (scanf("%lld", &n) != EOF)
        {
            tol = 0;
            /*
            findfac(n);
            for(int i=0;i<tol;++i)cout<<factor[i]<<" ";
            printf("
    ");
            */
            if (Miller_Rabin(n))
                printf("Yes
    ");
            else
                printf("No
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    MyBatis之启动分析(一)
    通俗算法教程03
    数学倒底有没有绝对的严格性和形式化?
    通俗算法教程02
    .NET Core 中正确使用 HttpClient 的姿势
    通俗算法教程01
    我要写一篇文章吗?
    [ASP.NET MVC 小牛之路]18
    [ASP.NET MVC 小牛之路]17
    [ASP.NET MVC 小牛之路]16
  • 原文地址:https://www.cnblogs.com/HexQwQ/p/13438675.html
Copyright © 2011-2022 走看看