zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup【RMQST算法区间最值】

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    很好的参考资料:http://s99f.blog.163.com/blog/static/3511836520094229354265/
    代码如下:
    View Code
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<math.h> 
    #include<algorithm>
    using namespace std; 
    #define N 50005 
    int dpmin[N][20], dpmax[N][20]; 
    int main()
    {
        int i, j, n, m;
        scanf("%d%d", &n, &m); 
        memset(dpmin, 0, sizeof(dpmin));
        memset(dpmax, 0, sizeof(dpmax));
        for(i=1; i<=n; i++)
        {
            scanf("%d", &dpmin[i][0]);
            dpmax[i][0]=dpmin[i][0]; 
        }
        int mm=floor(log(1.0*n)/log(2.0));
        for(j=1; j<=mm; j++)
            for(i=n; i>=1; i--)
            {
                if((i+(1<<(j-1)))<=n)
                { 
                    dpmin[i][j]=min(dpmin[i][j-1], dpmin[i+(1<<(j-1))][j-1]);
                    dpmax[i][j]=max(dpmax[i][j-1], dpmax[i+(1<<(j-1))][j-1]);
                } 
            }
        int x, y; 
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d", &x, &y);
            int  mid=floor(log(y*1.0-x+1)/log(2.0));
            int maxnum=max(dpmax[x][mid], dpmax[y-(1<<mid)+1][mid]);
            int minnum=min(dpmin[x][mid], dpmin[y-(1<<mid)+1][mid]);
            printf("%d\n", maxnum-minnum);
        }
    }


  • 相关阅读:
    Qt 学习 之 二进制文件读写
    QT学习 之 文本文件读写
    Qt学习 之 文件
    QT学习 之 三维饼图绘制
    Haskell 笔记(四)函数系统
    QT学习 之 事件与事件过滤器(分为五个层次)
    Qt学习 之 数据库(支持10种数据库)
    Qt5制作鼠标悬停显示Hint的ToolTip
    【码云周刊第 32 期】程序员眼中的 Vue 与 Angular !
    Qt学习 之 多线程程序设计(QT通过三种形式提供了对线程的支持)
  • 原文地址:https://www.cnblogs.com/Hilda/p/2633862.html
Copyright © 2011-2022 走看看