zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup【RMQST算法区间最值】

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    很好的参考资料:http://s99f.blog.163.com/blog/static/3511836520094229354265/
    代码如下:
    View Code
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<math.h> 
    #include<algorithm>
    using namespace std; 
    #define N 50005 
    int dpmin[N][20], dpmax[N][20]; 
    int main()
    {
        int i, j, n, m;
        scanf("%d%d", &n, &m); 
        memset(dpmin, 0, sizeof(dpmin));
        memset(dpmax, 0, sizeof(dpmax));
        for(i=1; i<=n; i++)
        {
            scanf("%d", &dpmin[i][0]);
            dpmax[i][0]=dpmin[i][0]; 
        }
        int mm=floor(log(1.0*n)/log(2.0));
        for(j=1; j<=mm; j++)
            for(i=n; i>=1; i--)
            {
                if((i+(1<<(j-1)))<=n)
                { 
                    dpmin[i][j]=min(dpmin[i][j-1], dpmin[i+(1<<(j-1))][j-1]);
                    dpmax[i][j]=max(dpmax[i][j-1], dpmax[i+(1<<(j-1))][j-1]);
                } 
            }
        int x, y; 
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d", &x, &y);
            int  mid=floor(log(y*1.0-x+1)/log(2.0));
            int maxnum=max(dpmax[x][mid], dpmax[y-(1<<mid)+1][mid]);
            int minnum=min(dpmin[x][mid], dpmin[y-(1<<mid)+1][mid]);
            printf("%d\n", maxnum-minnum);
        }
    }


  • 相关阅读:
    CLRS2e读书笔记—Chapter11
    CLRS2e读书笔记—红黑树
    IOS 入门介绍1IOS简单介绍
    一些iOS高效开源类库
    关于ICloud编程。
    转载 10款iOS高效开发必备的ObjectiveC类库
    ObjecetiveC强制转换问题1
    总结:求随机数的方法
    NSObjcet类的简单说明
    随机函数之 rand() 与 arc4random() 对比(转)
  • 原文地址:https://www.cnblogs.com/Hilda/p/2633862.html
Copyright © 2011-2022 走看看