zoukankan      html  css  js  c++  java
  • CSP-S 2020

    A. 儒略日

    根据题意直接模拟。我的方法是依次以400, 100, 4, 1为周期计算年份然后再算月日。

    #include <bits/stdc++.h>
    template <class T>
    inline void readInt(T &w) {
      char c, p = 0;
      while (!isdigit(c = getchar())) p = c == '-';
      for (w = c & 15; isdigit(c = getchar());) w = w * 10 + (c & 15);
      if (p) w = -w;
    }
    template <class T, class... U>
    inline void readInt(T &w, U &... a) { readInt(w), readInt(a...); }
    template <class T, class U>
    inline bool smin(T &x, const U &y) { return y < x ? x = y, 1 : 0; }
    template <class T, class U>
    inline bool smax(T &x, const U &y) { return x < y ? x = y, 1 : 0; }
    
    typedef long long LL;
    typedef std::pair<int, int> PII;
    
    constexpr int p4 = 365 * 4 + 1, p100 = 365 * 100 + 25 - 1, p400 = 365 * 400 + 100 - 3;
    constexpr int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
    int main() {
      int t; readInt(t);
      while (t--) {
        LL r; readInt(r);
        int year = -4712;
        auto checkYear = [&]() {
          if (year <= 1582) return year % 4 == 0;
          return year % 4 == 0 && year % 100 != 0 || year % 400 == 0;
        };
        auto print = [&]() {
          assert(0 <= r && r <= 365);
          if (checkYear() && r >= 31 + 28) {
            if (r == 31 + 28) {
              printf("29 2 ");
              if (year <= 0)
                printf("%d BC
    ", -year + 1);
              else 
                printf("%d
    ", year);
              return;
            }
            r--;
          }
          int m = 0;
          while (r >= days[m]) r -= days[m++];
          m++, r++;
          if (year <= 0)
            printf("%lld %d %d BC
    ", r, m, -year + 1);
          else
            printf("%lld %d %d
    ", r, m, year);
        };
        auto extend = [&](int pt) {
          while (year < pt) {
            int span = checkYear() ? 366 : 365;
            if (r < span) break;
            r -= span, year++;
          }
        };
        int pt = year + r / p4 * 4;
        if (pt <= 1582) {
          r %= p4, year = pt;
        } else {
          year = 1580, r -= (1580 + 4712) / 4 * p4;
        }
        extend(1582);
        if (year == 1582) {
          if (r >= 277) r += 10;
          extend(1600);
        }
        if (year == 1600) {
          year += r / p400 * 400, r %= p400;
          if (r >= p100 + 1) {
            r--;
            year += r / p100 * 100, r %= p100;
          }
          if (!checkYear() && r >= p4 - 1) r++;
            year += r / p4 * 4, r %= p4;
          extend(1e9);
        }  
        print();
      }
      return 0;
    }
    

    B. 动物园

    处理出已有哪些饲料,这些饲料可以养二进制哪些位为1的动物,答案是可以养的数量减去已有的数量。
    注意 (k=64, n = 0) 时会爆 uint64,这里直接用 long double
    实际上,因为所有的 (q_i) 互不相同,所以饲料的需求信息其实没啥用,只要统计哪些位在要求中出现即可。

    #include <bits/stdc++.h>
    
    template <class T>
    inline void readInt(T &w) {
      char c, p = 0;
      while (!isdigit(c = getchar())) p = c == '-';
      for (w = c & 15; isdigit(c = getchar());) w = w * 10 + (c & 15);
      if (p) w = -w;
    }
    template <class T, class... U>
    inline void readInt(T &w, U &... a) { readInt(w), readInt(a...); }
    
    constexpr int N(1e6 + 5);
    int n, m, c, k;
    using ULL = unsigned long long;
    int main() {
      readInt(n, m, c, k);
      ULL s = 0, ok = 0;
      for (int i = 1; i <= n; i++) {
        ULL x;
        readInt(x);
        s |= x;
      }
      for (int i = 1, x, y; i <= m; i++) {
        readInt(x, y);
        if (s >> x & 1 ^ 1) ok |= 1ULL << x;
      }
      long double ans = 1;
      for (int i = 0; i < k; i++)
        if (ok >> i & 1 ^ 1) ans *= 2;
      printf("%.0Lf", ans - n);
      return 0;
    }
    

    C. 函数调用

    题意:有长度为 (n) 的序列 ({a_n})(m) 个函数。函数只有三种:单点加一个数,序列整体乘一个数,依次调用若干函数(不会出现递归)。求依次调用一些函数后的序列 (a_n)

    考虑每个加操作被之后的乘操作影响了多少,即,求 (delta_i imes num_i) 的系数 (num_i)

    数据范围中的树提示我们建图。

    如果函数 (f) 调用了函数 (g),那么连有向边 (f ightarrow g)。因为没有递归,所以是DAG,下面在这个DAG上求解。

    (multi_i) 表示调用函数 (i) 执行的所有乘法系数之积。

    若函数 (f) 依次调用了函数 (g_0, g_1, g_2,dots g_k),那么 (g_i) 内部的某个加法操作所受的影响可以分为三个部分:

    1. 内部乘法的影响
    2. (prod_{j = i + 1}^k multi_j)
    3. 调用(f)的函数 (F) 的影响。

    将第3条 (F) 对其子函数的 影响 也记为 (num_F)

    如果 (F) 只是一个加法操作,那么这个 (num) 就是加法的系数。

    转移时,调用 (f) 的函数有 (F_0, F_1, dots, F_K),则 (num_f=sum left(num_{F_i} imesprod multi_j ight))

    #include <bits/stdc++.h>
    
    template <class T>
    inline void readInt(T &w) {
      char c, p = 0;
      while (!isdigit(c = getchar())) p = c == '-';
      for (w = c & 15; isdigit(c = getchar());) w = w * 10 + (c & 15);
      if (p) w = -w;
    }
    template <class T, class... U>
    inline void readInt(T &w, U &... a) { readInt(w), readInt(a...); }
    template <class T, class U>
    inline bool smin(T &x, const U &y) { return y < x ? x = y, 1 : 0; }
    template <class T, class U>
    inline bool smax(T &x, const U &y) { return x < y ? x = y, 1 : 0; }
    
    typedef long long LL;
    typedef std::pair<int, int> PII;
    
    constexpr int N(1e5 + 5), P(998244353);
    inline void inc(int &x, int y) {
      x += y;
      if (x >= P) x -= P;
    }
    int n, m, a[N], p[N], v[N], d[N];
    std::vector<int> g[N];
    int multi[N], now[N];
    bool vis[N];
    void dfs(int x) {
      if (vis[x]) return;
      vis[x] = 1;
      multi[x] = !p[x] && v[x] >= 0 ? v[x] : 1;
      for (int y: g[x]) {
        dfs(y);
        d[y]++;
        multi[x] = 1LL * multi[x] * multi[y] % P;
      }
    }
    int main() {
      readInt(n);
      for (int i = 1; i <= n; i++) readInt(a[i]);
      readInt(m);
      for (int i = 1; i <= m; i++) {
        int opt; readInt(opt);
        if (opt == 1)
          readInt(p[i], v[i]);
        else if (opt == 2)
          readInt(v[i]);
        else {
          readInt(v[i]);
          while (v[i]--) {
            int x; readInt(x);
            g[i].push_back(x);
          }
          std::reverse(g[i].begin(), g[i].end());
        }
      }
      readInt(v[++m]);
      while (v[m]--) {
        int x; readInt(x);
        g[m].push_back(x);
      }
      std::reverse(g[m].begin(), g[m].end());
      dfs(m);
      for (int i = 1; i <= n; i++)
        a[i] = 1LL * a[i] * multi[m] % P;
      std::queue<int> q;
      q.push(m);
      now[m] = 1;
      while (!q.empty()) {
        int x = q.front(); q.pop();
        if (p[x]) a[p[x]] = (a[p[x]] + 1LL * now[x] * v[x]) % P;
        for (int y: g[x]) {
          inc(now[y], now[x]);
          now[x] = 1LL * now[x] * multi[y] % P;
          if (--d[y] == 0) q.push(y);
        }
      }
      for (int i = 1; i <= n; i++)
        printf("%d%c", a[i], " 
    "[i == n]);
      return 0;
    }
    

    D. 贪吃蛇

    题意:给定长度为 (n) 的序列 (a_n) 表示 (n) 条蛇的长度,蛇 (i) 强于 (j) 当且仅当 ((a_i, i)>(a_j, j))。然后从第一轮开始,每轮最强的蛇可以吃掉最菜的蛇并开启下一轮。当某一轮选择不吃则不会开启下一轮。(i)(j) 会使 (a_i = a_i - a_j)。每条蛇想在不被吃的情况下吃尽可能多的蛇,问每条蛇都采取最优策略时最后会剩多少条蛇。

    最优策略一直都挺劝退的。

    如果不会选择不吃,那么会进行 (n-1) 轮,最后剩下一条。显然最优策略是这 $n-1 $轮的某个前缀。

    (i) 轮的决策取决于后面的情况而与已经进行的轮无关,

    (f(i)) 表示进行完前 (i) 轮(前面的蛇都选择吃)的情况下,总共最多会进行 (f(i)) 轮(在第 (f(i)+1) 轮选择了不吃)。

    设第 (i) 轮的最强蛇会在第 (t_i) 轮被吃掉,那么 (f(i)<t_i) 就表示可以吃,否则不可以吃。

    那么 (f(i) = min_{j=i+1}^{n-1} j [f(j)ge t_j])

    如果知道这 (n-1) 轮的具体情况, (f) 就可以在线性时间内处理出来,答案就是 (n - f(0))

    std::set 维护每轮的蛇,(O(nlog n)),可以得到70分。

    #include <bits/stdc++.h>
    
    template <class T>
    inline void readInt(T &w) {
      char c, p = 0;
      while (!isdigit(c = getchar())) p = c == '-';
      for (w = c & 15; isdigit(c = getchar());) w = w * 10 + (c & 15);
      if (p) w = -w;
    }
    template <class T, class... U>
    inline void readInt(T &w, U &... a) { readInt(w), readInt(a...); }
    template <class T, class U>
    inline bool smin(T &x, const U &y) { return y < x ? x = y, 1 : 0; }
    template <class T, class U>
    inline bool smax(T &x, const U &y) { return x < y ? x = y, 1 : 0; }
    
    typedef long long LL;
    typedef std::pair<int, int> PII;
    
    constexpr int N(1e6 + 5);
    int n, a[N];
    void solve() {
      std::set<PII> s;
      for (int i = 1; i <= n; i++) s.insert({a[i], i});
      static int idx[N], t[N];
      for (int i = 1; i <= n; i++) t[i] = 0;
      int ans = 1;
      for (int i = n; i > 1; i--) {
        idx[i] = s.rbegin()->second;
        t[s.begin()->second] = i;
        PII v = *s.rbegin();
        v.first -= s.begin()->first;
        s.erase(--s.end());
        s.erase(s.begin());
        s.insert(v);
      }
      for (int i = 2; i <= n; i++)
        if (t[idx[i]] > ans) ans = i;
      printf("%d
    ", ans);
    } 
    int main() {
      int t;
      readInt(t, n);
      for (int i = 1; i <= n; i++) readInt(a[i]);
      for (solve(); t > 1; t--) {
        int k, x, y;
        readInt(k);
        while (k--) {
          readInt(x, y);
          a[x] = y;
        }
        solve();
      }
      return 0;
    }
    
    

    100分的暂时不会,丢个链接,咕咕咕。

    营业日志 2020.11.7 一次信息不对称引发的 CSP2020 T4 讨论 - EntropyIncreaser

  • 相关阅读:
    取得GridPanel选定行所有字段值
    从少林寺的核心竞争力看软件作坊和正规军的差异
    估算软件项目成本
    Delphi FastReport报表常用方法
    少林寺的组织结构分析
    embed标签使用
    C# 多种方式播放Wav声音
    js 关闭浏览器
    ExtJS GridPanel根据条件改变字体颜色
    [Jsp] 如何在JSP页面快速输出从Servlet接收的数据_看JSTL常用C标签的威力
  • 原文地址:https://www.cnblogs.com/HolyK/p/13956841.html
Copyright © 2011-2022 走看看