最短路问题
Dijkstra
朴素版Dijkstra
代码模板
int dijkstra() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < n - 1; i++) {
int t = -1;
for(int j = 1; j <= n; j++) {
if(!st[j] && (t == -1 || dist[j] < dist[t])) t = j;
}
for(int j = 1; j <= n; j++) {
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
st[t] = true;
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
堆优化版Dijkstra
代码模板
int dijkstra() {
memset(d, 0x3f, sizeof d);
d[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while(heap.size()) {
auto t = heap.top(); heap.pop();
int ver = t.second, dis = t.first;
if(st[ver]) continue;
st[ver] = true;
for(int i = h[ver]; i != -1; i = ne[i]) {
int j = e[i];
if(d[j] > dis + w[i]) {
d[j] = dis + w[i];
heap.push({d[j], j});
}
}
}
if(d[n] == 0x3f3f3f3f) return -1;
return d[n];
}
Bellman-Ford算法
代码模板
int bellman_ford() {
memset(d, 0x3f, sizeof d);
d[1] = 0;
for(int i = 0; i < k; i++) {
memcpy(backup, d, sizeof d);
for(int j = 0; j < m; j++) {
int a = edges[j].a, b = edges[j].b, c = edges[j].c;
d[b] = min(d[b], backup[a] + c);
}
}
if(d[n] > 0x3f3f3f3f / 2) return -1;
return d[n];
}
Spfa算法
代码模板
int spfa() {
memset(d, 0x3f, sizeof d);
queue<int> qu;
d[1] = 0;
qu.push(1); st[1] = true;
while(!qu.empty()) {
int t = qu.front(); qu.pop();
st[t] = false;
for(int i = h[t]; i != -1; i = ne[i]) {
int j = e[i];
if(d[j] > d[t] + w[i]) {
d[j] = d[t] + w[i];
if(!st[j]) {
qu.push(j);
st[j] = true;
}
}
}
}
if(d[n] == 0x3f3f3f3f) return -1;
return d[n];
}
Floyd算法
代码模板
void floyd() {
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}