zoukankan      html  css  js  c++  java
  • POJ 1470 Closest Common Ancestors(LCA&RMQ)

    题意比较费劲:输入看起来很麻烦。处理括号冒号的时候是用%1s就可以。还有就是注意它有根节点。。。Q次查询

    在线st算法

    /*************************************************************************
        > File Name:            3.cpp
        > Author:               Howe_Young
        > Mail:                 1013410795@qq.com
        > Created Time:         2015年10月08日 星期四 19时03分30秒
     ************************************************************************/
    
    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <algorithm>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 10000;
    struct Edge {
        int to, next;
    }edge[maxn<<1];
    int tot, head[maxn];
    int ans[maxn];
    int Euler[maxn<<1];
    int R[maxn];
    int dep[maxn];
    int dp[maxn<<1][20]; // RMQ
    bool in[maxn];
    int cnt;
    void init()
    {
        cnt = 0;
        tot = 0;
        memset(head, -1, sizeof(head));
        memset(ans, 0, sizeof(ans));
        memset(in, false, sizeof(in));
    }
    void addedge(int u, int v)
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        head[u] = tot++;
    }
    void dfs(int u, int depth)
    {
        Euler[++cnt] = u;
        R[u] = cnt;
        dep[cnt] = depth;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            dfs(v, depth + 1);
            Euler[++cnt] = u;
            dep[cnt] = depth;
        }
    }
    
    void RMQ(int n)
    {
        for (int i = 1; i <= n; i++) dp[i][0] = i;
        int m = (int)(log(n) / log(2));
        for (int j = 1; j <= m; j++)
        {
            for (int i = 1; i + (1 << j) - 1 <= n; i++)
                dp[i][j] = dep[dp[i][j - 1]] < dep[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
        }
    }
    int query(int u, int v)
    {
        int l = R[u], r = R[v];
        if (l > r) swap(l, r);
        int k = (int)(log(r - l + 1) / log(2));
        int lca = dep[dp[l][k]] < dep[dp[r - (1 << k) + 1][k]] ? dp[l][k] : dp[r - (1 << k) + 1][k];
        return Euler[lca];
    }
    int main()
    {
        int n;
        while (~scanf("%d", &n))
        {
            init();
            char s1[3], s2[3];
            int u, v, m;
            for (int i = 0; i < n; i++)
            {
                scanf("%d %1s %1s %d %1s", &u, s1, s1, &m, s2);
                for (int j = 0; j < m; j++)
                {
                    scanf("%d", &v);
                    addedge(u, v);
                    in[v] = true;
                }
            }
            for (int i = 1; i <= n; i++)
                if (!in[i])
                {
                    dfs(i, 1);
                    break;
                }
            RMQ(cnt);
            int Q;
            scanf("%d", &Q);
            while (Q--)
            {
                scanf("%1s %d %d %1s", s1, &u, &v, s2);
                ans[query(u, v)]++;
            }
            for (int i = 1; i <= n; i++)
                if (ans[i])
                    printf("%d:%d
    ", i, ans[i]);
        }
        return 0;
    }

     离线tarjan算法:

    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int maxn = 1000;//节点
    const int maxm = 1000010;//最大查询数
    struct Edge {
        int to, next;
    }edge[maxn * 2];
    int tot, head[maxn];
    struct Query {
        int q, next;
        int index;
    }query[maxm * 2];
    int cnt, h[maxn];
    int fa[maxn];
    int r[maxn];
    int ancestor[maxn];
    int ans[maxm];
    int Q;
    bool vis[maxn];
    
    void init(int n)
    {
        Q = 0;
        tot  = 0;
        cnt = 0;
        memset(head, -1, sizeof(head));
        memset(h, -1, sizeof(h));
        memset(fa, -1, sizeof(fa));
        memset(ancestor, 0, sizeof(ancestor));
        memset(vis, false, sizeof(vis));
        for (int i = 1; i <= n; i++) r[i] = 1;
    }
    void addedge(int u, int v)
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        head[u] = tot++;
    }
    void addquery(int u, int v, int index)
    {
        query[cnt].q = v;
        query[cnt].index = index;
        query[cnt].next = h[u];
        h[u] = cnt++;
    }
    int find(int x)
    {
        if (fa[x] == -1) return x;
        return fa[x] = find(fa[x]);
    }
    void Union(int x, int y)
    {
        int tx = find(x);
        int ty = find(y);
        if (tx != ty)
        {
            if (tx < ty)
            {
                fa[tx] = ty;
                r[ty] += r[tx];
            }
            else
            {
                fa[ty] = tx;
                r[tx] += r[ty];
            }
        } 
    }
    void LCA(int u)
    {
        vis[u] = true;
        ancestor[u] = u;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if (vis[v]) continue;
            LCA(v);
            Union(u, v);
            ancestor[find(u)] = u;
        }
        for (int i = h[u]; i != -1; i = query[i].next)
        {
            int v = query[i].q;
            if (vis[v])
            {
                ans[query[i].index] = ancestor[find(v)];
            }
        }
    }
    int res[maxn];
    bool in[maxn];
    int main()
    {
        int n;
        while (~scanf("%d", &n))
        {
            init(n);
            memset(in, false, sizeof(in));
            int u, v, m;    
            char ch[2];
            for (int i = 1; i <= n; i++)
            {
                scanf("%d %1s %1s %d %1s", &u, ch, ch, &m, ch);
                for (int j = 0; j < m; j++)
                {
                    scanf("%d", &v);
                    in[v] = true;
                    addedge(u, v);
                    addedge(v, u);
                }
            }
            int q;
            scanf("%d", &q);
            while (q--)
            {
                scanf("%1s %d %d %1s", ch, &u, &v, ch);
                addquery(u, v, Q);
                addquery(v, u, Q++);
            }
            int root;
            for (int i = 1; i <= n; i++)
            {
                if (!in[i])
                {
                    root = i;
                    break;
                }
            }
            LCA(root);
            memset(res, 0, sizeof(res));
            for (int i = 0; i < Q; i++)
                res[ans[i]]++;
            for (int i = 1; i <= n; i++)
                if (res[i])
                    printf("%d:%d
    ", i, res[i]);
        }
        return 0;
    }
  • 相关阅读:
    A Bug's Life POJ 2492
    First Training
    洛谷----P1162 填涂颜色
    软考知识点梳理--软件测试
    软考知识点梳理--面向对象方法
    软考知识点梳理--国家信息化体系六要素
    软考知识点梳理--电子政务
    软考知识点梳理--激励理论
    软考知识点梳理--承建方项目论证
    软考知识点梳理--项目成本类型
  • 原文地址:https://www.cnblogs.com/Howe-Young/p/4862255.html
Copyright © 2011-2022 走看看