题意
Sol
比较套路吧,设(f[i][j])表示以(i)为根的子树中选了(j)个黑点对答案的贡献
然后考虑每条边的贡献,边的两边的答案都是可以算出来的
转移的时候背包一下。
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define fi first
#define se second
#define MP(x, y) make_pair(x, y)
#define LL long long
const int MAXN = 2001, INF = 1e9 + 7;
using namespace std;
inline int read() {
int x = 0, f = 1; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, siz[MAXN];
LL f[MAXN][MAXN];
vector<Pair> v[MAXN];
void dfs(int x, int fa) {
siz[x] = 1; f[x][1] = f[x][0] = 0;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i].fi, w = v[x][i].se;
if(to == fa) continue;
dfs(to, x);
siz[x] += siz[to];
}
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i].fi, w = v[x][i].se;
if(to == fa) continue;
for(int j = min(siz[x], K); j >= 0; j--)
for(int k = 0; k <= min(siz[to], j); k++)
if(f[x][j - k] >= 0)
f[x][j] = max(f[x][j], f[x][j - k] + f[to][k] + 1ll * k * (K - k) * w + 1ll * (siz[to] - k) * (N - (K - k) - siz[to]) * w);
}
}
main() {
N = read(); K = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read(), w = read();
v[x].push_back(MP(y, w));
v[y].push_back(MP(x, w));
}
memset(f, -0x7f, sizeof(f));
dfs(1, 0);
cout << f[1][K];
return 0;
}