zoukankan      html  css  js  c++  java
  • Kaggle房价预测

    之前在kaggle上做了关于房价预测的比赛,现整理如下。

    解决问题的大概步骤是:

    1、通过画图查看目标变量SalePrice是否偏分布,若是,则进行log(x+1)变换。并查看数值变量,若偏度大于0.75,也做log(x+1)变换

    2、缺失值处理。分类变量NA NA值赋值为0,数值变量中的NA赋值为其平均值

    3、将分类变量转化为哑变量

    4、回归分析。分别用Ridge回归与Lasso回归进行回归分析,因为Lasso回归的误差平均值更小,所以选取Lasso回归的结果作为最终预测结果

    具体代码如下:

    library(ggplot2)
    library(plyr)
    library(dplyr)
    library(caret)
    library(moments)
    library(glmnet)
    library(elasticnet)
    library(knitr)
    
    train=read.csv("train.csv",stringsAsFactors = F,header = T)
    test=read.csv("test.csv",stringsAsFactors = F,header = T)
    
    all_data=rbind(select(train,MSSubClass:SaleCondition),select(test,MSSubClass:SaleCondition))
    
    #画出售价的直方图,发现左偏,用log(x+1)进行调整
    df=rbind(data.frame(version="log(price+1)",x=log(train$SalePrice+1)),data.frame(version="price",x=train$SalePrice))
    ggplot(data=df)+facet_wrap(~version,ncol=2,scales="free_x")+geom_histogram(aes(x=x))
    

      

    train$SalePrice=log(train$SalePrice+1)
    
    #数值变量偏度》0.75时做log变换
    feature_classes <- sapply(names(all_data),function(x){class(all_data[[x]])})
    numeric_feats <-names(feature_classes[feature_classes != "character"])
    skewed_feats <- sapply(numeric_feats,function(x){skewness(all_data[[x]],na.rm=TRUE)})
    skewed_feats <- skewed_feats[skewed_feats > 0.75]
    for(x in names(skewed_feats)) {
      all_data[[x]] <- log(all_data[[x]] + 1)
    }
    #分类变量,dummy variables
    categorical_feats <- names(feature_classes[feature_classes == "character"])
    
    dummies <- dummyVars(~.,all_data[categorical_feats])
    categorical_1_hot <- predict(dummies,all_data[categorical_feats])
    categorical_1_hot[is.na(categorical_1_hot)] <- 0 
    
    #数值变量,用平均值弥补缺失值
    numeric_df <- all_data[numeric_feats]
    
    for (x in numeric_feats) {
      mean_value <- mean(train[[x]],na.rm = TRUE)
      all_data[[x]][is.na(all_data[[x]])] <- mean_value
    }
    #预处理后的重建data
    all_data <- cbind(all_data[numeric_feats],categorical_1_hot)
    X_train <- all_data[1:nrow(train),]
    X_test <- all_data[(nrow(train)+1):nrow(all_data),]
    y <- train$SalePrice
    
    #models
    CARET.TRAIN.CTRL <- trainControl(method="repeatedcv",
                                     number=5,
                                     repeats=5,
                                     verboseIter=FALSE)
    
    lambdas <- seq(1,0,-0.001)
    set.seed(123)  # for reproducibility
    model_ridge <- train(x=X_train,y=y,
                         method="glmnet",
                         metric="RMSE",
                         maximize=FALSE,
                         trControl=CARET.TRAIN.CTRL,
                         tuneGrid=expand.grid(alpha=0, # Ridge regression
                                              lambda=lambdas))
    ggplot(data=filter(model_ridge$result,RMSE<0.14)) +
      geom_line(aes(x=lambda,y=RMSE))
    
    mean(model_ridge$resample$RMSE)
    # [1] 0.1308965
    
    
    set.seed(123)  # for reproducibility
    model_lasso <- train(x=X_train,y=y,
                         method="glmnet",
                         metric="RMSE",
                         maximize=FALSE,
                         trControl=CARET.TRAIN.CTRL,
                         tuneGrid=expand.grid(alpha=1,  # Lasso regression
                                              lambda=c(1,0.1,0.05,0.01,seq(0.009,0.001,-0.001),
                                                       0.00075,0.0005,0.0001)))
    model_lasso
    
    mean(model_lasso$resample$RMSE)
    # [1] 0.1260769
    
    coef <- data.frame(coef.name = dimnames(coef(model_lasso$finalModel,s=model_lasso$bestTune$lambda))[[1]], 
                       coef.value = matrix(coef(model_lasso$finalModel,s=model_lasso$bestTune$lambda)))
    
    coef <- coef[-1,]
    
    picked_features <- nrow(filter(coef,coef.value!=0))
    not_picked_features <- nrow(filter(coef,coef.value==0))
    
    cat("Lasso picked",picked_features,"variables and eliminated the other",
        not_picked_features,"variables
    ")
    
    coef <- arrange(coef,-coef.value)
    imp_coef <- rbind(head(coef,10),
                      tail(coef,10))
    
    ggplot(imp_coef) +
      geom_bar(aes(x=reorder(coef.name,coef.value),y=coef.value),
               stat="identity") +
      ylim(-1.5,0.6) +
      coord_flip() +
      ggtitle("Coefficents in the Lasso Model") +
      theme(axis.title=element_blank())
    
    preds <- exp(predict(model_lasso,newdata=X_test)) - 1
    solution <- data.frame(Id=as.integer(rownames(X_test)),SalePrice=preds)
    write.csv(solution," lasso_sol.csv",row.names=FALSE)

    预测结果如下:

     

    其他的尝试:

    尝试将lasso和ridge方法的预测结果,按照权重相加得到最终预测结果,但是结果并不理想,还没有单独lasso的效果好。可能跟设置的权重有关系,但在这个问题上本来ridge的方法就没有lasso好,权重相加本身可能就拉低了lasso预测效果。

    听闻XGBoost在此方面效果比较好,或可一试。

  • 相关阅读:
    npm install 卡住的时候的处理
    建立ionic3的环境
    [转] PuTTY + Xming 远程使用 Linux GUI
    Oracle 11g 记录DML错误数据
    [转] 深入浅出 妙用Javascript中apply、call、bind
    [转] Java运行时动态生成class的方法
    获取Java class或者jar文件的本地路径
    AngularJS 中ng-model通过$watch动态取值
    [转] Everything about custom filters in AngularJS
    [转] 利用js实现 禁用浏览器后退
  • 原文地址:https://www.cnblogs.com/Hyacinth-Yuan/p/8003829.html
Copyright © 2011-2022 走看看