方法一、递归
class Solution {
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *p, TreeNode *q) {
// root为空
if(root == nullptr || p == nullptr|| q == nullptr) {
return nullptr;
}
// 如果p或者q为root(返回条件)
if(root == p || root == q) {
return root;
}
// 递归左子树,找到左子树中的p或者q
TreeNode *left = lowestCommonAncestor(root->left, p, q);
// 递归右子树,找到右子树中的p或者q
TreeNode *right = lowestCommonAncestor(root->right, p, q);
// 如果左子树找不到任何一个,返回右子树
if(left == nullptr) {
return right;
}
// 如果右子树也找不到任何一个,返回左子树
if(right == nullptr) {
return left;
}
// 否则,左右字数都能找到任何一个,说明当前root为祖先节点
return root;
}
};
方法二
class Solution {
public:
bool dfs(TreeNode *cur, TreeNode *des, vector<TreeNode*> &path_node) {
if (cur == NULL)
return false;
if (cur == des) {
path_node.push_back(cur);
return true;
}
if (dfs(cur -> left, des, path_node) || dfs(cur -> right, des, path_node)) {
path_node.push_back(cur);
return true;
}
return false;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*> path_node_p, path_node_q;
dfs(root, p, path_node_p);
dfs(root, q, path_node_q);
reverse(path_node_p.begin(), path_node_p.end());
reverse(path_node_q.begin(), path_node_q.end());
int n = min(path_node_p.size(), path_node_q.size());
for (int i = n - 1; i >= 0; i--)
if (path_node_p[i] == path_node_q[i])
return path_node_p[i];
return NULL;
}
};