zoukankan      html  css  js  c++  java
  • POJ3260 The Fewest Coins

    The Fewest Coins
    Time Limit: 2000MS Memory Limit: 65536K
    Total Submissions: 6615 Accepted: 2039

    Description

    Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.

    FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).

    Input

    Line 1: Two space-separated integers: N and T.
    Line 2: N space-separated integers, respectively V1, V2, ..., VN coins (V1, ...VN)
    Line 3: N space-separated integers, respectively C1, C2, ..., CN

    Output

    Line 1: A line containing a single integer, the minimum number of coins involved in a payment and change-making. If it is impossible for Farmer John to pay and receive exact change, output -1.

    Sample Input

    3 70
    5 25 50
    5 2 1

    Sample Output

    3
    
    
     1 #include<iostream>
     2 #include<string.h>
     3 #include<stdio.h>
     4 #include<algorithm>
     5 #define INF 999999999
     6 using namespace std;
     7 int dp1[20005],dp2[20005];
     8 int main()
     9 {
    10     int n,m;
    11     while(cin>>n>>m)
    12     {
    13         memset(dp1,0,sizeof(dp1));
    14         memset(dp2,0,sizeof(dp2));
    15         int val[150],num[150];
    16         for(int i=1;i<=n;i++)
    17             cin>>val[i];
    18         for(int i=1;i<=n;i++)
    19             cin>>num[i];
    20         for(int i=1;i<=20000;i++)
    21             dp1[i]=dp2[i]=INF;
    22         dp1[0]=dp2[0]=0;
    23         for(int i=1;i<=n;i++)
    24         {
    25             for(int k=1,flag=0;;k*=2)
    26             {
    27                 if(k*2>num[i])
    28                 {
    29                     k=num[i]-k+1;
    30                     flag=1;
    31                 }
    32                 for(int j=20000;j>=k*val[i];j--)
    33                 {
    34                     dp1[j]=min(dp1[j],dp1[j-k*val[i]]+k);
    35                 }
    36                 if(flag)
    37                     break;
    38             }
    39         }
    40         for(int i=1;i<=n;i++)
    41         {
    42             for(int j=val[i];j<=20000;j++)
    43                 dp2[j]=min(dp2[j],dp2[j-val[i]]+1);
    44         }
    45         int ans=INF;
    46         for(int i=m;i<=20000;i++)
    47         {
    48             ans=min(ans,dp1[i]+dp2[i-m]);
    49         }
    50         if(ans==INF)
    51         cout<<-1<<endl;
    52         else
    53             cout<<ans<<endl;
    54     }
    55     return 0;
    56 }
    
    
    
    
    
    
    
  • 相关阅读:
    0603学术诚信和职业道德
    0602第二个冲刺
    0525《构建之法》8、9、10章读后感
    0525Sprint回顾
    实验三进程调度
    解决提问的问题
    阅读《构建之法》第13-17章
    阅读:第10、11、12章
    作业5.2(封装及测试)
    作业5.1
  • 原文地址:https://www.cnblogs.com/ISGuXing/p/7215280.html
Copyright © 2011-2022 走看看