zoukankan      html  css  js  c++  java
  • 多线程

    并发与并行

    • 并发:指两个或多个事件在同一个时间段内发生。
    • 并行:指两个或多个事件在同一时刻发生(同时发生)。

    在操作系统中,安装了多个程序,并发指的是在一段时间内宏观上有多个程序同时运行,这在单 CPU 系统中,每一时刻只能有一道程序执行,即微观上这些程序是分时的交替运行,只不过是给人的感觉是同时运行,那是因为分时交替运行的时间是非常短的。

    而在多个 CPU 系统中,则这些可以并发执行的程序便可以分配到多个处理器上(CPU),实现多任务并行执行,即利用每个处理器来处理一个可以并发执行的程序,这样多个程序便可以同时执行。目前电脑市场上说的多核 CPU,便是多核处理器,核 越多,并行处理的程序越多,能大大的提高电脑运行的效率。

    注意:单核处理器的计算机肯定是不能并行的处理多个任务的,只能是多个任务在单个CPU上并发运行。同理,线程也是一样的,从宏观角度上理解线程是并行运行的,但是从微观角度上分析却是串行运行的,即一个线程一个线程的去运行,当系统只有一个CPU时,线程会以某种顺序执行多个线程,我们把这种情况称之为线程调度。

    线程与进程

    • 进程:是指一个内存中运行的应用程序,每个进程都有一个独立的内存空间,一个应用程序可以同时运行多个进程;进程也是程序的一次执行过程,是系统运行程序的基本单位;系统运行一个程序即是一个进程从创建、运行到消亡的过程。

    • 线程:线程是进程中的一个执行单元,负责当前进程中程序的执行,一个进程中至少有一个线程。一个进程中是可以有多个线程的,这个应用程序也可以称之为多线程程序。

      简而言之:一个程序运行后至少有一个进程,一个进程中可以包含多个线程

    我们可以再电脑底部任务栏,右键----->打开任务管理器,可以查看当前任务的进程:

    进程

    线程

    线程调度:

    • 分时调度

      所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间。

    • 抢占式调度

      优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个(线程随机性),Java使用的为抢占式调度。

      • 设置线程的优先级

    抢占式调度详解

    大部分操作系统都支持多进程并发运行,现在的操作系统几乎都支持同时运行多个程序。比如:现在我们上课一边使用编辑器,一边使用录屏软件,同时还开着画图板,dos窗口等软件。此时,这些程序是在同时运行,”感觉这些软件好像在同一时刻运行着“。
    实际上,CPU(中央处理器)使用抢占式调度模式在多个线程间进行着高速的切换。对于CPU的一个核而言,某个时刻,只能执行一个线程,而 CPU的在多个线程间切换速度相对我们的感觉要快,看上去就是在同一时刻运行。
    其实,多线程程序并不能提高程序的运行速度,但能够提高程序运行效率,让CPU的使用率更高。

    多线程原理

    创建线程方式一继承Thread类

    Java使用java.lang.Thread类代表线程,所有的线程对象都必须是Thread类或其子类的实例。每个线程的作用是完成一定的任务,实际上就是执行一段程序流即一段顺序执行的代码。Java使用线程执行体来代表这段程序流。Java中通过继承Thread类来创建启动多线程的步骤如下:

    1. 定义Thread类的子类,并重写该类的run()方法,该run()方法的方法体就代表了线程需要完成的任务,因此把run()方法称为线程执行体。
    2. 创建Thread子类的实例,即创建了线程对象
    3. 调用线程对象的start()方法来启动该线程

    代码如下:

    测试类:

    public class Demo01 {
    	public static void main(String[] args) {
    		//创建自定义线程对象
    		MyThread mt = new MyThread("新的线程!");
    		//开启新线程
    		mt.start();
    		//在主方法中执行for循环
    		for (int i = 0; i < 10; i++) {
    			System.out.println("main线程!"+i);
    		}
    	}
    }
    

    自定义线程类:

    public class MyThread extends Thread {
    	//定义指定线程名称的构造方法
    	public MyThread(String name) {
    		//调用父类的String参数的构造方法,指定线程的名称
    		super(name);
    	}
    	/**
    	 * 重写run方法,完成该线程执行的逻辑
    	 */
    	@Override
    	public void run() {
    		for (int i = 0; i < 10; i++) {
    			System.out.println(getName()+":正在执行!"+i);
    		}
    	}
    }
    

    创建线程方式二实现Runnable接口

    采用 java.lang.Runnable 也是非常常见的一种,我们只需要重写run方法即可。

    步骤如下:

    1. 定义Runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。
    2. 创建Runnable实现类的实例,并以此实例作为Thread的target来创建Thread对象,该Thread对象才是真正的线程对象。
    3. 调用线程对象的start()方法来启动线程。
    public class ThreadDemo02 implements Runnable {
        @Override
        public void run() {
            for (int i = 0; i < 20; i++) {
                System.out.println("我是子线程"+i);
            }
        }
    
        public static void main(String[] args) {
            ThreadDemo02 td2 = new ThreadDemo02();
            new Thread(td2).start();
            for (int i = 0; i <1000 ; i++) {
                System.out.println("我是主线程"+i);
            }
        }
    }
    

    通过实现Runnable接口,使得该类有了多线程类的特征。run()方法是多线程程序的一个执行目标。所有的多线程 代码都在run方法里面。
    Thread类实际上也是实现了Runnable接口的类。

    在启动的多线程的时候,需要先通过Thread类的构造方法Thread(Runnable target) 构造出对象,然后调用Thread 对象的start()方法
    来运行多线程代码。实际上所有的多线程代码都是通过运行Thread的start()方法来运行的。因此,不管是继承Thread类还是实现 Runnable
    接口来实现多线程,最终还是通过Thread的对象的API来控制线程的,熟悉Thread类的API是进行多线程 编程的基础。

    tips:Runnable对象仅仅作为Thread对象的target,Runnable实现类里包含的run()方法仅作为线程执行体。
    而实际的线程对象依然是Thread实例,只是该Thread线程负责执行其target的run()方法。

    Thread和Runnable的区别:

    如果一个类继承Thread,则不适合资源共享。但是如果实现了Runable接口的话,则很容易的实现资源共享。

    总结:实现Runnable接口比继承Thread类所具有的优势:

    1. 适合多个相同的程序代码的线程去共享同一个资源。
    2. 可以避免java中的单继承的局限性。
    3. 增加程序的健壮性,实现解耦操作,代码可以被多个线程共享,代码和线程独立。
    4. 线程池只能放入实现Runable或Callable类线程,不能直接放入继承Thread的类。

    扩充:在java中,每次程序运行至少启动2个线程。一个是main线程,一个是垃圾收集线程。因为每当使用 java命令执行一个
    类的时候,实际上都会启动一个JVM,每一个JVM其实在就是在操作系统中启动了一个进程。

    匿名内部类方式实现线程的创建

    使用线程的内匿名内部类方式,可以方便的实现每个线程执行不同的线程任务操作。

    使用匿名内部类的方式实现Runnable接口,重新Runnable接口中的run方法:

    /*
        匿名内部类方式实现线程的创建
        匿名:没有名字
        内部类:写在其他类内部的类
        匿名内部类作用:简化代码
        把子类继承父类,重写父类的方法,创建子类对象合一步完成
        把实现类实现类接口,重写接口中的方法,创建实现类对象合成一步完成
        匿名内部类的最终产物:子类/实现类对象,而这个类没有名字
        格式:
        new 父类/接口(){
        重写父类/接口中的方法
        };
     */
    public static void main(String[] args) {
            new Thread(){
                @Override
                public void run() {
                    for (int i = 0; i < 20; i++) {
                        System.out.println(Thread.currentThread().getName()+"张三");
                    }
                }
            }.start();
    
            /*Runnable r = new Runnable(){
                @Override
                public void run() {
                    System.out.println(Thread.currentThread().getName()+"李四");
                }
            };
    
            new Thread(r).start();*/
    
            new Thread(new Runnable(){
                @Override
                public void run() {
                    for (int i = 0; i < 20; i++) {
                        System.out.println(Thread.currentThread().getName()+"李四");
                    }
                }
            }).start();
        }
    

    线程安全

    如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样的,
    而且其他的变量的值也和预期的是一样的,就是线程安全的。

    我们通过一个案例,演示线程的安全问题:

    电影院要卖票,我们模拟电影院的卖票过程。假设要播放的电影是 “葫芦娃大战奥特曼”,本次电影的座位共100个
    (本场电影只能卖100张票)。 我们来模拟电影院的售票窗口,实现多个窗口同时卖 “葫芦娃大战奥特曼”这场电影票
    (多个窗口一起卖这100张票) 需要窗口,采用线程对象来模拟;需要票,Runnable接口子类来模拟

    public class RunnableImpl implements Runnable {
        private int ticketNums = 100;
        @Override
        public void run() {
            while (true){
                if (ticketNums>0){
                    System.out.println(Thread.currentThread().getName()+"正在卖第"+ticketNums+"张票");
                    ticketNums--;
                }
            }
        }
        public static void main(String[] args) {
            RunnableImpl r = new RunnableImpl();
            Thread t0 = new Thread(r,"窗口1");
            Thread t1 = new Thread(r,"窗口2");
            Thread t2 = new Thread(r,"窗口3");
            t0.start();
            t1.start();
            t2.start();
        }
    }
    

    线程同步

    当我们使用多个线程访问同一资源的时候,且多个线程中对资源有写的操作,就容易出现线程安全问题。

    要解决上述多线程并发访问一个资源的安全性问题:也就是解决重复票与不存在票问题,Java中提供了同步机制 (synchronized)来解决。

    根据案例简述:

    窗口1线程进入操作的时候,窗口2和窗口3线程只能在外等着,窗口1操作结束,窗口1和窗口2和窗口3才有机会进入代码去执行。
    也就是说在某个线程修改共享资源的时候,其他线程不能修改该资源,等待修改完毕同步之后,才能去抢夺CPU 资源,完成对应的操作,
    保证了数据的同步性,解决了线程不安全的现象。
    

    为了保证每个线程都能正常执行原子操作,Java引入了线程同步机制。

    那么怎么去使用呢?有三种方式完成同步操作:

    1. 同步代码块。
    2. 同步方法。
    3. 锁机制。

    同步代码块

    • 同步代码块: synchronized关键字可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。

    格式:

    synchronized(同步锁){
    需要同步操作的代码
    }
    

    同步锁:

    对象的同步锁只是一个概念,可以想象为在对象上标记了一个锁.

    1. 锁对象可以是任意类型。
    2. 多个线程对象要使用同一把锁。

    注意:在任何时候,最多允许一个线程拥有同步锁谁拿到锁就进入代码块,其他的线程只能在外等着
    (BLOCKED)。

    使用同步代码块实现代码:

    public class RunnableImpl implements Runnable {
        //定义一个多个线程共享的票源
        private int ticketNums = 100;
        //创建一个锁对象
        Object obj = new Object();
        @Override
        public void run() {
            while (true){
                //创建同步代码块
                synchronized (obj){
                    if (ticketNums>0){
                        try {
                            Thread.sleep(10);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println(Thread.currentThread().getName()+"正在卖第"+ticketNums+"张票");
                        ticketNums--;
                    }
                }
            }
        }
        public static void main(String[] args) {
            RunnableImpl r = new RunnableImpl();
            Thread t0 = new Thread(r,"窗口1");
            Thread t1 = new Thread(r,"窗口2");
            Thread t2 = new Thread(r,"窗口3");
            t0.start();
            t1.start();
            t2.start();
        }
    }
    

    同步方法

    • 同步方法:使用synchronized修饰的方法,就叫做同步方法,保证A线程执行该方法的时候其他线程只能在方法外等着。

    格式:

    public synchronized void method(){
    可能会产生线程安全问题的代码
    }
    

    同步锁是谁?
    对于非static方法,同步锁就是this.
    对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。
    使用同步方法代码如下:

    public class RunnableImpl03 implements Runnable {
        //定义一个多个线程共享的票源
        private int ticketNums = 100;
        @Override
        public void run() {
            while (true){
                payTicket();
            }
        }
        //创建同步方法
        /*
            锁对象 是 谁调用这个方法 就是谁
            隐含 锁对象 就是 this
         */
        public synchronized void payTicket(){
            if (ticketNums>0){
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName()+"正在卖第"+ticketNums+"张票");
                ticketNums--;
            }
        }
        public static void main(String[] args) {
            RunnableImpl03 r = new RunnableImpl03();
            Thread t0 = new Thread(r,"窗口1");
            Thread t1 = new Thread(r,"窗口2");
            Thread t2 = new Thread(r,"窗口3");
            t0.start();
            t1.start();
            t2.start();
        }
    }
    

    Lock锁

    java.util. concurrent . locks. Lock机制提供了比synchronized代码块和synchronized方法更广泛的锁定操作,
    同步代码块/同步方法具有的功能Lock都有,除此之外更强大,更体现面向对象。

    Lock锁也称同步锁,加锁与释放锁方法化了,如下:

    • public void lock() :加同步锁。
    • public void unlock() :释放同步锁。

    使用如下:

    public class RunnableImpl04 implements Runnable {
        //定义一个多个线程共享的票源
        private int ticketNums = 100;
        //创建ReentrantLock对象
        Lock l = new ReentrantLock();
        @Override
        public void run() {
            while (true){
                //开启锁
                l.lock();
                if (ticketNums>0){
                    try {
                        Thread.sleep(10);
                        System.out.println(Thread.currentThread().getName()+"正在卖第"+ticketNums+"张票");
                        ticketNums--;
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }finally {
                        //释放锁
                        l.unlock();
                    }
                }
            }
        }
        public static void main(String[] args) {
            RunnableImpl04 r = new RunnableImpl04();
            Thread t0 = new Thread(r,"窗口1");
            Thread t1 = new Thread(r,"窗口2");
            Thread t2 = new Thread(r,"窗口3");
            t0.start();
            t1.start();
            t2.start();
        }
    }
    

    线程状态概述

    线程状态 导致状态发生条件
    NEW(新建) 线程刚被创建,但是并未启动。还没调用start方法。
    Runnable(可运行) 线程可以在java虚拟机中运行的状态,可能正在运行自己代码,也可能没有,这取决于操作系统处理器。
    Blocked(锁阻塞) 当一个线程试图获取一个对象锁,而该对象锁被其他的线程持有,则该线程进入Blocked状态;当该线程持有锁时,该线程将变成Runnable状态。
    Waiting(无限等待) 一个线程在等待另一个线程执行一个(唤醒)动作时,该线程进入Waiting状态。进入这个状态后是不能自动唤醒的,必须等待另一个线程调用notify或者notifyAll方法才能够唤醒。
    TimedWaiting(计时等待) 同waiting状态,有几个方法有超时参数,调用他们将进入Timed Waiting状态。这一状态将一直保持到超时期满或者接收到唤醒通知。带有超时参数的常用方法有Thread.sleep 、Object.wait。
    Teminated(被终止) 因为run方法正常退出而死亡,或者因为没有捕获的异常终止了run方法而死亡。

    Timed Waiting (计时等待)

    Timed Waiting在API中的描述为:一个正在限时等待另一个线程执行一个(唤醒)动作的线程处于这一状态。单独
    的去理解这句话,真是玄之又玄,其实我们在之前的操作中已经接触过这个状态了,在哪里呢?

    在我们写卖票的案例中,为了减少线程执行太快,现象不明显等问题,我们在run方法中添加了sleep语句,这样就
    强制当前正在执行的线程休眠(暂停执行),以"减慢线程”。

    其实当我们调用了sleep方法之后,当前执行的线程就进入到”休眠状态",其实就是所谓的Timed Waiting(计时等
    待),那么我们通过一个案例加深对该状态的一 个理解。

    实现一个计数器,计数到100, 在每个数字之间暂停1秒,每隔10个数字输出一个字符串

    public class MyThread extends Thread {
          public void run( ) {
                for(inti=0;i<100;i++){
                      if((i)%10==0){
                            System. out . print1n("------”+ i);
                      }
                System . out . print(i);
                try {
                      Thread. sleep(1000);
                      System. out. print ("线程睡眠1秒! 
    ");
                } catch (InterruptedException e) {
                      e. printStackTrace();
                }
          }
    }
          public static void main(String[] args) {
                new MyThread(). start();
          }
    }
    

    通过案例可以发现,sleep方法的使用还是很简单的。我们需要记住下面几点:

    1. 进入TIMED. _WAITING状态的一种常见情形是调用的sleep方法,单独的线程也可以调用,不一定非要有协
      作关系。
    2. 为了让其他线程有机会执行,可以将Thread.sleep()的调用放线程run()之内。这样才能保证该线程执行过程
      中会睡眠
    3. sleep与锁无关,线程睡眠到期自动苏醒,并返回到Runnable (可运行)状态。

    小提示: sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就
    开始立刻执行。

    Timed Waiting线程状态图:

    BLOCKED (锁阻塞)

    Blocked状态在API中的介绍为:一个正在阻塞等待一个监视器锁(锁对象)的线程处于这一状态。

    我们已经学完同步机制,那么这个状态是非常好理解的了。比如,线程A与线程B代码中使用同一锁,如果线程A获
    取到锁,线程A进入到Runnable状态,那么线程B就进入到Blocked锁阻塞状态。

    这是由Runnable状态进入Blocked状态。除此Waiting以及Time Waiting状态也会在某种情况下进入阻塞状态,而
    这部分内容作为扩充知识点带领大家了解一下。

    Blocked线程状态图

    Waiting (无限等待)

    Wating状态在API中介绍为:一个正在无限期等待另一个线程执行一个特别的(唤醒)动作的线程处于这一状态.

    public class Demo11WaitAndNotify {
        public static void main(String[] args) {
            //创建锁对象,保证唯一
            Object obj = new Object();
            //创建顾客线程
            new Thread(){
                @Override
                public void run() {
                    while (true){
                        synchronized (obj){
                            System.out.println("告知老板要的包子的种类和数量");
                            try {
                                //调用wait方法,放弃cpu的执行,进入到WAITING状态(无限等待)
                                obj.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                            System.out.println("包子做好了,开吃");
                        }
                    }
                }
            }.start();
            new Thread(){
                @Override
                public void run() {
                    while (true){
                        try {
                            Thread.sleep(5000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        synchronized (obj){
                            System.out.println("花了5秒做包子");
                            obj.notify();
                        }
                    }
                }
            }.start();
        }
    }
    

    Waiting线程状态图

    补充知识

    线程间通信

    概念:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。

    比如:线程A用来生成包子的,线程B用来吃包子的,包子可以理解为同一资源,线程A与线程B处理的动作,一个是生产,一个是消费,那么线程A与线程B之间就存在线程通信问题。

    为什么要处理线程间通信:

    多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。

    如何保证线程间通信有效利用资源:

    多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。也就是我们需要通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制。

    等待唤醒机制

    什么是等待唤醒机制

    这是多个线程间的一种协作机制。谈到线程我们经常想到的是线程间的竞争(race),比如去争夺锁,但这并不是故事的全部,线程间也会有协作机制。就好比在公司里你和你的同事们,你们可能存在在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。

    就是在一个线程进行了规定操作后,就进入等待状态(wait()), 等待其他线程执行完他们的指定代码过后 再将其唤醒(notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。

    wait/notify 就是线程间的一种协作机制。

    等待唤醒中的方法

    等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:

    1. wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知(notify)”在这个对象上等待的线程从wait set 中释放出来,重新进入到调度队列(ready queue)中
    2. notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座。
    3. notifyAll:则释放所通知对象的 wait set 上的全部线程。

    注意:

    哪怕只通知了一个等待的线程,被通知线程也不能立即恢复执行,因为它当初中断的地方是在同步块内,而此刻它已经不持有锁,所以她需要再次尝试去获取锁(很可能面临其它线程的竞争),成功后才能在当初调用 wait 方法之后的地方恢复执行。

    总结如下:

    • 如果能获取锁,线程就从 WAITING 状态变成 RUNNABLE 状态;
    • 否则,从 wait set 出来,又进入 entry set,线程就从 WAITING 状态又变成 BLOCKED 状态

    调用wait和notify方法需要注意的细节

    1. wait方法与notify方法必须要由同一个锁对象调用。因为:对应的锁对象可以通过notify唤醒使用同一个锁对象调用的wait方法后的线程。

    2. wait方法与notify方法是属于Object类的方法的。因为:锁对象可以是任意对象,而任意对象的所属类都是继承了Object类的。

    3. wait方法与notify方法必须要在同步代码块或者是同步函数中使用。因为:必须要通过锁对象调用这2个方法。

    生产者与消费者问题

    等待唤醒机制其实就是经典的“生产者与消费者”的问题。

    就拿生产包子消费包子来说等待唤醒机制如何有效利用资源:

    包子铺线程生产包子,吃货线程消费包子。当包子没有时(包子状态为false),吃货线程等待,包子铺线程生产包子(即包子状态为true),
    并通知吃货线程(解除吃货的等待状态),因为已经有包子了,那么包子铺线程进入等待状态。接下来,吃货线程能否进一步执行则取决于锁的
    获取情况。如果吃货获取到锁,那么就执行吃包子动作,包子吃完(包子状态为false),并通知包子铺线程(解除包子铺的等待状态),吃货线
    程进入等待。包子铺线程能否进一步执行则取决于锁的获取情况。
    

    代码演示:

    包子资源类:

    public class BaoZi {
         String  pier ;
         String  xianer ;
         boolean  flag = false ;//包子资源 是否存在  包子资源状态
    }
    

    吃货线程类:

    public class ChiHuo extends Thread{
        private BaoZi bz;
    
        public ChiHuo(String name,BaoZi bz){
            super(name);
            this.bz = bz;
        }
        @Override
        public void run() {
            while(true){
                synchronized (bz){
                    if(bz.flag == false){//没包子
                        try {
                            bz.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                    System.out.println("吃货正在吃"+bz.pier+bz.xianer+"包子");
                    bz.flag = false;
                    bz.notify();
                }
            }
        }
    }
    

    包子铺线程类:

    public class BaoZiPu extends Thread {
    
        private BaoZi bz;
    
        public BaoZiPu(String name,BaoZi bz){
            super(name);
            this.bz = bz;
        }
    
        @Override
        public void run() {
            int count = 0;
            //造包子
            while(true){
                //同步
                synchronized (bz){
                    if(bz.flag == true){//包子资源  存在
                        try {
    
                            bz.wait();
    
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
    
                    // 没有包子  造包子
                    System.out.println("包子铺开始做包子");
                    if(count%2 == 0){
                        // 冰皮  五仁
                        bz.pier = "冰皮";
                        bz.xianer = "五仁";
                    }else{
                        // 薄皮  牛肉大葱
                        bz.pier = "薄皮";
                        bz.xianer = "牛肉大葱";
                    }
                    count++;
    
                    bz.flag=true;
                    System.out.println("包子造好了:"+bz.pier+bz.xianer);
                    System.out.println("吃货来吃吧");
                    //唤醒等待线程 (吃货)
                    bz.notify();
                }
            }
        }
    }
    

    测试类:

    public class Demo {
        public static void main(String[] args) {
            //等待唤醒案例
            BaoZi bz = new BaoZi();
    
            ChiHuo ch = new ChiHuo("吃货",bz);
            BaoZiPu bzp = new BaoZiPu("包子铺",bz);
    
            ch.start();
            bzp.start();
        }
    }
    

    执行效果:

    包子铺开始做包子
    包子造好了:冰皮五仁
    吃货来吃吧
    吃货正在吃冰皮五仁包子
    包子铺开始做包子
    包子造好了:薄皮牛肉大葱
    吃货来吃吧
    吃货正在吃薄皮牛肉大葱包子
    包子铺开始做包子
    包子造好了:冰皮五仁
    吃货来吃吧
    吃货正在吃冰皮五仁包子
    

    线程池

    线程池概念

    • 线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。

    由于线程池中有很多操作都是与优化资源相关的,我们在这里就不多赘述。我们通过一张图来了解线程池的工作原理:

    合理利用线程池能够带来三个好处:

    1. 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
    2. 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
    3. 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,
      而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

    线程池的使用

    Java里面线程池的顶级接口是java.util.concurrent.Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是java.util.concurrent.ExecutorService

    要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在java.util.concurrent.Executors线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官方建议使用Executors工程类来创建线程池对象。

    Executors类中有个创建线程池的方法如下:

    • public static ExecutorService newFixedThreadPool(int nThreads):返回线程池对象。(创建的是有界线程池,也就是池中的线程个数可以指定最大数量)

    获取到了一个线程池ExecutorService 对象,那么怎么使用呢,在这里定义了一个使用线程池对象的方法如下:

    • public Future<?> submit(Runnable task):获取线程池中的某一个线程对象,并执行

      Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用。

    使用线程池中线程对象的步骤:

    1. 创建线程池对象。
    2. 创建Runnable接口子类对象。(task)
    3. 提交Runnable接口子类对象。(take task)
    4. 关闭线程池(一般不做)。

    Runnable实现类代码:

    public class RunnableImpl implements Runnable{
    
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName()+"创建了一个新的线程执行");
        }
    }
    

    线程池测试类:

    public class ThreadPoolDemo {
        public static void main(String[] args) {
            //1.使用线程池的工厂类Executors里边提供的静态方法newF ixedThreadPool生产一个指定线程数量的线程池
            ExecutorService es = Executors.newFixedThreadPool(2);
            //2.创建一个类, 实现Runnable接口,重写run方法,设置线程任务
            //3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
            es.submit(new RunnableImpl());
            es.submit(new RunnableImpl());
            es.submit(new RunnableImpl());
        }
    }
    

    函数式编程思想概述

    在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。相对而言,面向对象过分强调“必须
    通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做

    面向对象的思想:

    ​ 做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情.

    函数式编程思想:

    ​ 只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不重视过程

    冗余的Runnable代码

    传统写法

    当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable接口来定义任务内容,并使用java.lang.Thread类来启动该线程。代码如下:

    public class Demo01Runnable {
    	public static void main(String[] args) {
        	// 匿名内部类
    		Runnable task = new Runnable() {
    			@Override
    			public void run() { // 覆盖重写抽象方法
    				System.out.println("多线程任务执行!");
    			}
    		};
    		new Thread(task).start(); // 启动线程
    	}
    }
    

    本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个Runnable接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。

    代码分析

    对于Runnable的匿名内部类用法,可以分析出几点内容:

    • Thread类需要Runnable接口作为参数,其中的抽象run方法是用来指定线程任务内容的核心;
    • 为了指定run的方法体,不得不需要Runnable接口的实现类;
    • 为了省去定义一个RunnableImpl实现类的麻烦,不得不使用匿名内部类;
    • 必须覆盖重写抽象run方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
    • 而实际上,似乎只有方法体才是关键所在

    编程思想转换

    做什么,而不是怎么做

    我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正
    希望做的事情是:将run方法体内的代码传递给Thread类知晓。

    传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。
    那,有没有更加简单的办法?如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达
    到目的,过程与形式其实并不重要。

    生活举例

    当我们需要从北京到上海时,可以选择高铁、汽车、骑行或是徒步。我们的真正目的是到达上海,而如何才能到达
    上海的形式并不重要,所以我们一直在探索有没有比高铁更好的方式——搭乘飞机。

    而现在这种飞机(甚至是飞船)已经诞生:2014年3月Oracle所发布的Java 8(JDK 1.8)中,加入了Lambda表达式
    的重量级新特性,为我们打开了新世界的大门。

    体验Lambda的更优写法

    借助Java 8的全新语法,上述Runnable接口的匿名内部类写法可以通过更简单的Lambda表达式达到等效:

    public class Demo02LambdaRunnable {
    	public static void main(String[] args) {
    		new Thread(() -> System.out.println("多线程任务执行!")).start(); // 启动线程
    	}
    }
    

    这段代码和刚才的执行效果是完全一样的,可以在1.8或更高的编译级别下通过。从代码的语义中可以看出:我们启动了一个线程,
    而线程任务的内容以一种更加简洁的形式被指定。

    不再有“不得不创建接口对象”的束缚,不再有“抽象方法覆盖重写”的负担,就是这么简单!

    回顾匿名内部类

    Lambda是怎样击败面向对象的?在上例中,核心代码其实只是如下所示的内容:

    () -> System.out.println("多线程任务执行!")
    

    为了理解Lambda的语义,我们需要从传统的代码起步。

    使用实现类

    要启动一个线程,需要创建一个Thread类的对象并调用start方法。而为了指定线程执行的内容,需要调用Thread类的构造方法:

    • public Thread(Runnable target)

    为了获取Runnable接口的实现对象,可以为该接口定义一个实现类RunnableImpl

    public class RunnableImpl implements Runnable {
    	@Override
    	public void run() {
    		System.out.println("多线程任务执行!");
    	}
    }
    

    然后创建该实现类的对象作为Thread类的构造参数:

    public class Demo03ThreadInitParam {
    	public static void main(String[] args) {
    		Runnable task = new RunnableImpl();
    		new Thread(task).start();
    	}
    }
    

    使用匿名内部类

    这个RunnableImpl类只是为了实现Runnable接口而存在的,而且仅被使用了唯一一次,所以使用匿名内部类的语法即可省去该类的单独定义,即匿名内部类:

    public class Demo04ThreadNameless {
    	public static void main(String[] args) {
    		new Thread(new Runnable() {
    			@Override
    			public void run() {
    				System.out.println("多线程任务执行!");
    			}
    		}).start();
    	}
    }
    

    匿名内部类的好处与弊端

    一方面,匿名内部类可以帮我们省去实现类的定义;另一方面,匿名内部类的语法——确实太复杂了!

    语义分析

    仔细分析该代码中的语义,Runnable接口只有一个run方法的定义:

    • public abstract void run();

    即制定了一种做事情的方案(其实就是一个函数):

    • 无参数:不需要任何条件即可执行该方案。
    • 无返回值:该方案不产生任何结果。
    • 代码块(方法体):该方案的具体执行步骤。

    同样的语义体现在Lambda语法中,要更加简单:

    () -> System.out.println("多线程任务执行!")
    
    • 前面的一对小括号即run方法的参数(无),代表不需要任何条件;
    • 中间的一个箭头代表将前面的参数传递给后面的代码;
    • 后面的输出语句即业务逻辑代码。

    Lambda标准格式

    Lambda省去面向对象的条条框框,格式由3个部分组成:

    • 一些参数
    • 一个箭头
    • 一段代码

    Lambda表达式的标准格式为:

    (参数类型 参数名称) -> { 代码语句 }
    

    格式说明:

    • 小括号内的语法与传统方法参数列表一致:无参数则留空;多个参数则用逗号分隔。
    • ->是新引入的语法格式,代表指向动作。
    • 大括号内的语法与传统方法体要求基本一致。

    练习:使用Lambda标准格式(无参无返回)

    题目

    给定一个厨子Cook接口,内含唯一的抽象方法makeFood,且无参数、无返回值。如下:

    public interface Cook {
        void makeFood();
    }
    

    在下面的代码中,请使用Lambda的标准格式调用invokeCook方法,打印输出“吃饭啦!”字样:

    public class Demo05InvokeCook {
        public static void main(String[] args) {
            // TODO 请在此使用Lambda【标准格式】调用invokeCook方法
        }
    
        private static void invokeCook(Cook cook) {
            cook.makeFood();
        }
    }
    

    解答

    public static void main(String[] args) {
        invokeCook(() -> {
          	System.out.println("吃饭啦!");
        });
    }
    

    备注:小括号代表Cook接口makeFood抽象方法的参数为空,大括号代表makeFood的方法体。

    Lambda的参数和返回值

    需求:
        使用数组存储多个Person对象
        对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序
    

    下面举例演示java.util.Comparator<T>接口的使用场景代码,其中的抽象方法定义为:

    • public abstract int compare(T o1, T o2);

    当需要对一个对象数组进行排序时,Arrays.sort方法需要一个Comparator接口实例来指定排序的规则。假设有一个Person类,含有String nameint age两个成员变量:

    public class Person { 
        private String name;
        private int age;
        
        // 省略构造器、toString方法与Getter Setter 
    }
    
    public class LambdaDemo02 {
        public static void main(String[] args) {
            Person[] arr = {
                    new Person("马云",56),
                    new Person("马化腾",48),
                    new Person("雷军",45),
            };
            /*Arrays.sort(arr, new Comparator<Person>() {
                @Override
                public int compare(Person o1, Person o2) {
                    return o1.getAge()-o2.getAge();
                }
            });*/
            //使用lambda方式
            Arrays.sort(arr,(Person o1, Person o2)->{
                return o1.getAge()-o2.getAge();
            });
            for (Person p : arr) {
                System.out.println(p);
            }
        }
    }
    

    运行结果:

    Person{name='雷军', age=45}
    Person{name='马化腾', age=48}
    Person{name='马云', age=56}
    

    练习:使用Lambda标准格式(有参有返回)

    题目

    给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值:

    public interface Calculator {
        int calc(int a, int b);
    }
    

    在下面的代码中,请使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算:

    public class Demo08InvokeCalc {
        public static void main(String[] args) {
            // TODO 请在此使用Lambda【标准格式】调用invokeCalc方法来计算120+130的结果ß
        }
    
        private static void invokeCalc(int a, int b, Calculator calculator) {
            int result = calculator.calc(a, b);
            System.out.println("结果是:" + result);
        }
    }
    

    解答

    public static void main(String[] args) {
        invokeCalc(120, 130, (int a, int b) -> {
          	return a + b;
        });
    }
    

    备注:小括号代表Calculator接口calc抽象方法的参数,大括号代表calc的方法体。

    练习:使用Lambda省略格式

    Lambda表达式:是可推导,可以省略
    凡是根据上下文推导出来的内容,都可以省略书写

    可以省略的内容:

    1. (参数列表) :括号中参数列表的数据类型,可以省略不写
    2. (参数列表) :括号中的参数如果只有一个那么类型和( )都可以省略
    3. {一些代码} :如果{}中的代码只有一行,无论是否有返回值都可以省略({},return,分号)

    注意:要省略{}, return,分号必须一起省略

    题目

    仍然使用前文含有唯一makeFood抽象方法的厨子Cook接口,在下面的代码中,请使用Lambda的省略格式调用invokeCook方法,打印输出“吃饭啦!”字样:

    public class Demo09InvokeCook {
        public static void main(String[] args) {
            // TODO 请在此使用Lambda【省略格式】调用invokeCook方法
        }
    
        private static void invokeCook(Cook cook) {
            cook.makeFood();
        }
    }
    

    解答

    public static void main(String[] args) {
      	invokeCook(() -> System.out.println("吃饭啦!"));
    }
    

    Lambda的使用前提

    Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:

    1. 使用Lambda必须具有接口,且要求接口中有且仅有一个抽象方法
      无论是JDK内置的RunnableComparator接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda。
    2. 使用Lambda必须具有上下文推断
      也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。

    备注:有且仅有一个抽象方法的接口,称为“函数式接口”。

  • 相关阅读:
    C#操作数据库,将其查查出来的记录条数显示在winform窗体中的方法之一
    关于SQL配置管理器的服务无法启动的解决办法!
    测试随笔
    .net版ckeditor配置水印功能(转)
    vs2010安装路径解决不能修改的方法
    c#wiform中KeyDown事件
    C#winform程序自定义鼠标样式
    一条sql语句循环插入N条不同记录(转)
    winform降低功耗总结
    ILMerge合并程序
  • 原文地址:https://www.cnblogs.com/ITHSZ/p/13343596.html
Copyright © 2011-2022 走看看