思路:
求出三角形外接圆;
然后找出三角形三条边在小数意义下的最大公约数;
然后n=pi*2/fgcd;
求出面积即可;
代码:
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define INF (1e9) #define eps (1e-4) #define pi (3.1415926535) struct point { double x,y; }; struct point ai[4]; struct line { double k,b; line *another; void updata(struct point a,struct point bb) { another=new line; if(a.x==bb.x) k=INF,b=a.x; else { if(a.y==bb.y) k=0,b=a.y; else { k=(bb.y-a.y)/(bb.x-a.x); b=a.y-k*a.x; } } if(k==0) { another->k=INF,another->b=(a.x+bb.x)/2.0; } else if(k==INF) { another->k=0,another->b=(a.y+bb.y)/2.0; } else { another->k=-1.0/k; struct point temp; temp.x=(a.x+bb.x)/2.0; temp.y=(a.y+bb.y)/2.0; another->b=temp.y-another->k*temp.x; } } }; struct line bi[4],ci[4]; struct point getnode(line a,line b) { struct point res; res.x=(b.b-a.b)/(a.k-b.k); res.y=a.k*res.x+a.b; return res; } double dist(struct point a,struct point b) { double aa=(a.x-b.x)*(a.x-b.x); double bb=(a.y-b.y)*(a.y-b.y); aa=sqrt(aa+bb); return aa; } double fgcd(double x, double y) { while (fabs(x)>eps&&fabs(y)>eps) { if (x > y) x-=floor(x/y)*y; else y-=floor(y/x)*x; } return x + y; } int main() { for(int i=1;i<=3;i++) cin>>ai[i].x>>ai[i].y; bi[1].updata(ai[1],ai[2]); bi[2].updata(ai[1],ai[3]); bi[3].updata(ai[2],ai[3]); for(int i=1;i<=3;i++) ci[i]=*bi[i].another; struct point o=getnode(ci[1],ci[2]); double R=dist(o,ai[1]); double vi[4]; vi[1]=dist(ai[1],ai[2]); vi[2]=dist(ai[1],ai[3]); vi[3]=dist(ai[2],ai[3]); sort(vi+1,vi+4); double an[4]; an[1]=2.0*asin(vi[1]/(2.0*R)); an[2]=2.0*asin(vi[2]/(2.0*R)); an[3]=2.0*pi-an[1]-an[2]; sort(an+1,an+4); double ans1=fgcd(an[2],an[1]); double ans2=fgcd(an[3],an[2]); double ans=fgcd(max(ans1,ans2),min(ans1,ans2)); double ans_=(2.0*pi-ans)/2.0; printf("%.9lf",R*R*sin(ans)*pi/ans); return 0; }