zoukankan      html  css  js  c++  java
  • Slam笔记I

    视觉Slam笔记I

    第二讲-三位空间刚体运动

    点与坐标系:

    基础概念:

    • 坐标系:左手系和右手系。右手系更常用。定义坐标系时,会定义世界坐标系,相机坐标系,以及其他关心对象的坐标系。空间中任意一点可由空间的基的线性表出。

    • 加减法:用坐标描述更方便。

    • 内积:点乘得数,即image-20200329010953972

    • 外积:叉乘得向量,即image-20200329011111261右手系下,得到按照右手定则获取的向量。

    • 坐标系间的变换:
      通过平移(向量的加减)和旋转(有多种描述方式,见下)

    • 2D情况:二维坐标点表示位置+一个旋转角表示朝向。

    • 3D情况:三维坐标点表示位置+一个旋转角(角度间的变换使用旋转,旋转方式有多种,见下)。

    旋转矩阵:(描述旋转的第一种方式)

    坐标系 (e_1,e_2,e_3)经过旋转变成 (e'_1,e'_2,e'_3),在三维空间中,向量 a保持不动,那么如何表出它在 (e'_1,e'_2,e'_3)下的坐标:

    1. 线性表出法向量 a坐标:两坐标系实质是分别用两组不同的基去表示同一个点,则两者的线性组合是相等的:image-20200329012910587
    2. 左右两边同时左乘 (e_1,e_2,e_3)的转置,得到:image-20200329013036243
    • R即为旋转矩阵
    • 性质:
      • R是一个正交矩阵(矩阵的逆即矩阵的转置,或转置×本身即为一个单位矩阵)。
      • R的行列式值为1。
    • 满足上述性质的矩阵都可以称为旋转矩阵,使用集合表示:
      ,又称特殊正交群SO(3)。
    • 固定表示方式(下标顺序):image-20200329013817705且满足矩阵关系:image-20200329013839175

    因此,空间中不同坐标系下点坐标的变换可以使用:image-20200329014154282即旋转+平移的形式完全描述

    • 理论依据:欧拉定理,刚体在三维空间中的一般运动,可分解为刚体上方某一点的平移,以及绕经过此点的旋转轴的转动。

    但是,这种表示方式在多次进行变换时会有不便(image-20200329015145398),因此使用增广的方式进行表示:

    image-20200329015201203

    • 其中,image-20200329015312728称为变换矩阵,image-20200329015328058的形式称为齐次坐标。
    • 齐次坐标性质:齐次坐标乘上任意非0常数时仍表达同一坐标image-20200329155858830
    • 变换矩阵的集合:称为特殊欧式群SE(3):image-20200329160232459image-20200329160247758

    旋转向量和欧拉角:

    旋转矩阵在实际中更常用,但这些概念也是需要清楚的。

    旋转矩阵R是一个3×3的矩阵,有九个元素,但仅有三个自由度,也就是存在描述方式上的冗余,那么能否以更少的元素表达旋转?

    刚体旋转存在一个转轴(向量),还有转过的角度,于是想用角度乘以向量(单位化过后)的形式去描述旋转。

    旋转向量
    • 一个向量,方向为旋转轴方向,长度为转过的角度。(单位向量乘角度大小)

    • 又称角轴/轴角。

    • 罗德里格斯公式可以将旋转向量(n,theta)转换成旋转矩阵R:image-20200329161622677

    • 旋转矩阵R也可以转换成旋转向量(n,theta):image-20200329161720658n是特征向量。

    欧拉角
    • 将旋转分解成三个方向上的转动,常用顺序为yaw-pitch-roll(也就是绕Z-Y-X方式转,注意 ,不同地方在绕Z转之后,所绕的Y轴可能是原来的Y轴,也可能是转动后的Y轴)
    • image-20200329162256923
    • 万向锁(Gimbal Lock):欧拉角存在奇异性(特定值下,旋转的自由度减1)
    • image-20200329162950598在pitch方向旋转完毕后,roll方向旋转和yaw方向旋转是重合的。由此,欧拉角不适合插值或迭代,故不常用。

    四元数:

    吸取了旋转矩阵和旋转向量、欧拉角的优点,是一种优秀的描述方式。

    • 2D情况下,可以用单位复数表达旋转:

    [z=x+iy= ho e^{i heta} ]

    • 用z乘以i,相当于旋转了90度(),乘-i转动-90度。

    在三维情况下,四元数可作为扩充定义的复数

    • 特点1:有三个虚部+一个实部image-20200329164223218

    • 特点2:虚部之间存在关系:image-20200329164245980

    • 单位四元数可以表达三维空间的旋转:

      image-20200329164406659

    • 四元数也能定义很多运算:

      image-20200329164506016

    • 四元数转换成旋转向量:image-20200329165043809

    • 旋转向量转换成四元数:image-20200329165108650

    • 用四元数表示旋转:

    image-20200329165224736

  • 相关阅读:
    阿里云安装Mono 发生错误解决方法
    在Entity Framework 中执行Tsql语句
    WinRT app guide
    开源稳定的消息队列 RabbitMQ
    Catpic: OpenSocial Container on .NET
    MSDTC 故障排除
    HTML5 canvas图形库RGraph
    《我的WCF之旅》博文系列汇总
    TSQL Enhancement in SQL Server 2005[下篇]
    谈谈基于SQL Server 的Exception Handling[上篇]
  • 原文地址:https://www.cnblogs.com/IaCorse/p/12593429.html
Copyright © 2011-2022 走看看