zoukankan      html  css  js  c++  java
  • 二叉查找树

    2020.7.25 update:优化了树中已有点找前驱后继的方法(详见“删除”);普通情况找前驱后继的正确性。


    一、总述:

      二叉查找树,是指根的左子树都比根小,右子树都比根大,且左右子树也是二叉查找树的二叉树,如图:

         可见,每个节点的左子树都比这个节点小、右子树都比这个节点大,若从左向右依次看每个节点,则是从小到大的。

      作用:随机数据下快速查找,支持修改。

    二、基本操作:

    1、查找一个数x是否存在

      在二叉查找树中查询x是否存在,先从树的根开始看,若根对应的值y:

        等于x:若个数不小于1,则查找成功,返回相应查找成功信息,否则失败,返回相应查找失败信息。

        大于x:递归看左子树

        小于x:递归看右子树

      一直递归到找到x(即查找成功)或要看的子树为空(即x在二叉查找树中不存在,这时返回相应查找失败信息)后,操作就完成了。

    //u表示当前节点的编号,
    //v是当前要插入的数,val表示的是节点的键值,rank表示排名,
    //size表示以当前节点的为根的子树的大小,示例维护额外信息
    //cnt表示当前节点代表的数(键值)的个数
    //ls是左儿子,rs是右儿子
    //x为结构体数组,记录每个节点的信息
    //bnt为出现过的节点的总数(在增加的过程中给节点编号)
    //root为根节点编号 
    
    int find(int val,int u)
    {
        if(u==0)
            return 0;
        if(val==x[u].val)
            return u;
        if(val>x[u].val)
            return fin(val,x[u].rs);
        else
            return fin(val,x[u].ls);
    }
    示例代码

    2、插入一个数x

      向二叉查找树中插入一个数x,先与树的根所对应的值y进行比较,若y 

        等于x:让该节点的cnt个数标记加一,或什么都不做(视题目要求)

        大于x:若有左儿子,递归看左子树;否则,建立他的左儿子,其键值为x

        小于x:若有右儿子,递归看右子树;否则,建立他的右儿子,其键值为x

      一些子树大小等信息也可在递归过程中沿路维护。

    //u表示当前节点的编号,
    //v是当前要插入的数,val表示的是节点的键值,rank表示排名,
    //size表示以当前节点的为根的子树的大小,示例维护额外信息 
    //cnt表示当前节点代表的数(键值)的个数 
    //ls是左儿子,rs是右儿子
    //x为结构体数组,记录每个节点的信息 
    //bnt为出现过的节点的总数(在增加的过程中给节点编号) 
    void add(int u, int v)
    {
        x[u].size++;
        if (x[u].val == v)
        {
            x[u].cnt++;
            return;
        }
        if (x[u].val > v)
        {
            if (x[u].ls != 0)
                add(x[u].ls, v);
            else
            {
                bnt++;
                x[bnt].val = v;
                x[bnt].size = 1;
                x[bnt].cnt = 1;
                x[u].ls = bnt;
            }
        }
        else
        {
            if (x[u].rs != 0)
                add(x[u].rs, v);
            else
            {
                bnt++;
                x[bnt].val = v;
                x[bnt].size = 1;
                x[bnt].cnt = 1;
                x[u].rs = bnt;
            }
         }
    } 
    示例代码

    3、删除一个数x

      一法:可以利用cnt标记,找到这个数后cnt--即可,如果为cnt=0,就表示此时已经没有这个数。

      二法:不利用cnt标记,直接改变树的结构。

    删除节点存在 3 种情况,几  乎所有类似博客都提到了这点。这 3 种情况分别如下:

      1. 没有左右子节点,可以直接删除
      2. 存在左节点或者右节点,删除后需要对子节点移动
      3. 同时存在左右子节点,不能简单的删除,但是可以通过和后继节点子树内的后继节点 交换后转换为前两种情况

              (update)若求树中已有点的后继,可从该点右走一格后找向左走的尽头;已有点的前驱,可从该点左走一格后找向右走的尽头。即代码可更优。

      没有左右子节点时,只需要删除该节点、该节点和父节点的关系(若有父节点)即可。

      存在左节点或者右节点时,先让子节点与父节点儿子为自己的那一侧建立连接(若有父节点),删除自己即可。若自己即为根节点,注意标记儿子为新根。

      同时存在左节点和右节点时,先找到这个节点u的后继节点v,即为其右子树的最小值所在节点,即其右子树最左的节点。将u的键值改为v的键值,将v删除。由于u的后继节点v一定没有左儿子,故删除v为前两种删除情况。

    //u表示当前节点的编号,
    //v是当前要插入的数,val表示的是节点的键值,rank表示排名,
    //size表示以当前节点的为根的子树的大小,示例维护额外信息
    //cnt表示当前节点代表的数(键值)的个数
    //ls是左儿子,rs是右儿子
    //x为结构体数组,记录每个节点的信息
    //bnt为出现过的节点的总数(在增加的过程中给节点编号)
    //root为根节点编号 
    //f[]记录每个节点的父节点,可在插入时维护 
    
    int next;
    
    void delete(int u)//u可由查找操作得到 
    {
        if(x[u].ls==0&&x[u].rs==0&&f[u])
        {
            if(x[f[u]].ls==u)
                x[f[u]].ls=0;
            else
                x[f[u]].rs=0;
        }
        if(x[u].ls&&x[u].rs)
        {
            GetNext(x[u].rs,x[u].val);//见后文代码 
            x[u].val=x[next].val;
            delete(next); 
        }
        if(x[u].ls)
        {
            if(f[u])
            {
                if(x[f[u]].ls==u)
                    x[f[u]].ls=x[u].ls;
                else
                    x[f[u]].rs=x[u].ls;
                f[x[u].ls]=f[u];    
            }
            else
            {
                root=x[u].ls; 
                f[x[u].ls]=0;
            }
        }
        else
        {
            if(f[u])
            {
                if(x[f[u]].ls==u)
                    x[f[u]].ls=x[u].rs;
                else
                    x[f[u]].rs=x[u].rs;
                f[x[u].rs]=f[u];    
            }
            else
            {
                root=x[u].rs; 
                f[x[u].rs]=0;
            }
        }
    }
    示例代码

    4、查找一个数x的前驱或后继

      前驱:树中小于x的最大数;后继:树中大于x的最小数

      找前驱:从根节点开始,如果当前节点键值大于等于x,递归它的左子树,反之递归它的右子树,直到子树为空。递归过程记录答案,最终的答案即为所求;若答案没有找到过,则无前驱。

      找后继:从根节点开始,如果当前节点键值大于x,递归它的左子树,反之递归它的右子树,直到子树为空。递归过程记录答案,最终的答案即为所求;若答案没有找到过,则无后继。

        (update)正确性:不断优化答案,排除了剩下全部的劣解、错解。

    //u表示当前节点的编号,
    //v是当前要插入的数,val表示的是节点的键值,rank表示排名,
    //size表示以当前节点的为根的子树的大小,示例维护额外信息 
    //cnt表示当前节点代表的数(键值)的个数 
    //ls是左儿子,rs是右儿子
    //x为结构体数组,记录每个节点的信息 
    //bnt为出现过的节点的总数(在增加的过程中给节点编号) 
    
    int pre,next;
    
    void GetPre(int u, int val)
    {
        if (x[u].val >= val)  //* 
        {
            if (x[u].ls == 0)
                return;
            else
                GetPre(x[u].ls, val);
        }
        else
        {
            if (x[u].cnt != 0) //若有cnt标记,则要有判断 
            pre = x[u].val; 
            if (x[u].rs == 0)
            return;
            else
                GetPre(x[u].rs, val);
        }
    }
    
    void GetNext(int u, int val)
    {
        if (x[u].val > val)  //* 
        {
            if (x[u].cnt != 0)
            next = x[u].val; 
            if (x[u].ls == 0)
                return;
            else
                GetNext(x[u].ls, val);
        }
        else
        {
            if (x[u].rs == 0)
            return;
            else
                GetNext(x[u].rs, val);
        }
    }
        
    示例代码

    5、查找第x小的数(按排名找值)

      查找二叉查找树中第x小的数y,即有x-1个数比y小。这里size表示树的大小指的是树中包含所有数的个数,可能不等于节点数(若有cnt标记的话)。从整个树开始递归,设根u的左子树的size为lsize,若lsize:

      加上u.cnt后仍小于x:递归根的右子树,问题转化为查找右子树中第(x-lsize-u.cnt)小的数;

      大于等于x:递归根的左子树,问题转化为查找左子树中第x小的数;

      都不满足:则根的键值为所求。

    若没使用cnt标记,u.cnt即为1。

    //u表示当前节点的编号,
    //v是当前要插入的数,val表示的是节点的键值,rank表示排名,
    //size表示以当前节点的为根的子树的大小,示例维护额外信息
    //cnt表示当前节点代表的数(键值)的个数
    //ls是左儿子,rs是右儿子
    //x为结构体数组,记录每个节点的信息
    //bnt为出现过的节点的总数(在增加的过程中给节点编号)
    
    int GetValByRank(int u, int rank)
    {
        if (u == 0) //树中数的个数还不足x个 
            return INF;
        if (x[x[u].ls].size >= rank)
            return GetValByRank(x[u].ls, rank);
        if (x[x[u].ls].size + x[u].cnt < rank)
            return GetValByRank(x[u].rs, rank - x[x[u].ls].size - x[u].cnt);
        return x[u].val;
    }
    示例代码

    5、查找x的排名(按值找排名)

      二叉查找树中x的排名(设这里是从小到大排),即小于x的数的个数+1。设一个统计变量tot=1(即它自己),从整个树开始递归,若根的键值:

      等于x:lsize+tot即为所求

      大于x:递归根的左子树,若为空,tot即为所求;

      小于x:tot+=lsize+u.cnt,递归右子树,若为空,tot即为所求。

     1 //u表示当前节点的编号,
     2 //v是当前要插入的数,val表示的是节点的键值,rank表示排名,
     3 //size表示以当前节点的为根的子树的大小,示例维护额外信息
     4 //cnt表示当前节点代表的数(键值)的个数
     5 //ls是左儿子,rs是右儿子
     6 //x为结构体数组,记录每个节点的信息
     7 //bnt为出现过的节点的总数(在增加的过程中给节点编号)
     8 
     9 int tot=1;
    10 
    11 void GetRankByVal(int u,int val)
    12 {
    13     return;
    14     if(val==x[u].val)
    15     {
    16         tot+=x[x[u].ls].size;
    17         return;
    18     }
    19     if(val<x[u].val)
    20         GetRankByVal(x[u].ls,val);
    21     tot+=x[x[u].ls].size+x[u].cnt;
    22     GetRankByVal(x[u].rs,val);
    23 }
    示例代码

    后记:

    当树被数据卡成一条链时,大多数操作的效率都会退化为O(n),这时就需要平衡树了。

    参考资料:

    关于二叉查找树的一些事儿(bst详解,平衡树入门)

    二叉查找树 - 删除节点 详解(Java实现)

  • 相关阅读:
    [VB]用API打开浏览文件夹对话框,选择文件夹
    C# 16进制与字符串、字节数组之间的转换
    DIV未知高度的垂直居中代码
    Webbrowser控件判断网页加载完毕的简单方法
    一些控制鼠标的例子!
    Kernel device tree: simplebus
    Display Serial Interface (From WIKI)
    消费提示:常见 处理器/显卡 性能排名网站 汇总
    HDMI notes From HDMI wiki
    Linux graphics stack 理解
  • 原文地址:https://www.cnblogs.com/InductiveSorting-QYF/p/12966957.html
Copyright © 2011-2022 走看看