zoukankan      html  css  js  c++  java
  • Splay笔记

    Splay笔记

    0.
    第一次接触是去年暑假一位巨佬学长介绍了这么一种神奇的平衡树,不过当时感觉没怎么完全弄懂。后来仔细想了一下个人感觉理解大有加深,这个数据结构确实非常优秀~~~搬到博客园上来啦!
    1. rotate()
    To maintain the features of BST, we can get these basic rotation rules:

    If A is the x son of B,

    • B will become the !x son of A after the rotation.
    • The !x son of B will still be the !x son of B after the rotation.
    • The !x son of A will become the x son of B after the rotation.
    • The x son of A will still be the x son of A after the rotation.

    Before & After one rotation:
    在这里插入图片描述
    CODE:

    bool dir(int x)
    {
        return x==tree[tree[x].fa].ch[1];
    }
    
    void pushup(int x)
    {
        tree[x].tot=tree[tree[x].ch[0]].tot+tree[tree[x].ch[1]].tot+1;
        return;
    }
    
    void connect(int x,int fa,int son)
    {
        tree[x].fa=fa;
        tree[fa].ch[son]=x;
        return;
    }
    
    void rotate(int x)
    {
        int y=tree[x].fa;
        if(y==root)
            root=x; //Remember to change the root. 
        int r=tree[y].fa;
        int yson=dir(x),rson=dir(y);
        int build=tree[x].ch[yson^1];
        connect(build,y,yson);
        connect(y,x,yson^1);
        connect(x,r,rson);
        pushup(y);
        pushup(x);
        return;
    }

    More explanations to the rotate function:
    在这里插入图片描述
    The left is one of the original relationship among the grandfather, the father, and the son. After rotate(x), the relationship among them becomes the right part of the picture.
    Other situations can be gotten similarly by reflecting or reversing.
    2. splay()

    splay(x,to) is to rotate x continuously until it becomes to’s son.

    There are two conditions of x, x’s father, and x’s grandfather: whether they are in a straight line or not.

    • If dir(x)dir(y), we can just simply rotate x twice.
      在这里插入图片描述
    • If dir(x)=dir(y), if we rotate x’s father then rotate x, we will get this:
      在这里插入图片描述
      Instead, if we rotate x twice, we will get this.
      在这里插入图片描述
      The first one can keep the tree more balanced, especially when there is a long chain in the tree.

    But actually, both methods meet some situations that will make the situation more or less balance.

    I choose the first in the following code.
    CODE:

    void splay(int x,int to)
    { 
        while(tree[x].fa!=to)
        {
            int y=tree[x].fa;
            if(tree[y].fa==to) //Sometimes x only needs to be rotated once. 
                rotate(x);
            else if(dir(x)==dir(y))
                rotate(y),rotate(x);
            else
                rotate(x),rotate(x);
        }
        pushup(x);
        return;
    }

    3. build()
    I prefer to use recursion to build the tree…

    int build(int l,int r)
    {
        if(l>r)
            return 0;
        int mid=(l+r)>>1;
        connect(build(l,mid-1),mid,0);
        connect(build(mid+1,r),mid,1);
        tree[mid].rev=0;
        pushup(mid);
        return mid; //The return value is the root. 
    }

    4. Two Basic Problems
    Important:Whenever an operation about nodes(which means asking rank is excluded) is done, splay the node.

    • P3391 (Luogu)

    Overview: Several commands (l,r) which mean that the subsequence from l to r in the array is reversed are given. Print out the array you get after m commands.

    /*
    This function is for updating the reverse tag of the node. 
    The main idea is that there is no need to reverse a section twice, so you can save lots of time by marking. (Similar to the lazy tag of the segment tree.)
    */
    void pushdown(int x)
    {
        if(tree[x].rev)
        {
            swap(tree[x].ch[0],tree[x].ch[1]); 
            tree[tree[x].ch[0]].rev^=1;
            tree[tree[x].ch[1]].rev^=1;
            tree[x].rev=0;
        }
        return;
    }
    
    int find(int x)
    {
        int now=root;
        x--;
        pushdown(now);
        while(x!=tree[tree[now].ch[0]].tot)
        {
            if(tree[tree[now].ch[0]].tot<x)
                x-=tree[tree[now].ch[0]].tot+1,now=tree[now].ch[1];
            else
                now=tree[now].ch[0];
            pushdown(now);
            }
        return now;
    }

    PRINT:

    void print(int now)
    {
        if(!now)
            return;
        pushdown(now);
        print(tree[now].ch[0]);
        if(now!=1 && now!=n+2)
          cout<<now-1<<' ';
        print(tree[now].ch[1]);
        return; 
    }

    MAIN:

    PosL=find(l);
    splay(PosL,0);
    PosR=find(r+2);
    splay(PosR,root);
    tree[tree[PosR].ch[0]].rev^=1;

    (待填坑)有空我把splay的普通平衡树也实现一下放上来。有空再更一下splay的时间复杂度~~~

  • 相关阅读:
    东南大学2020年数学分析考研试题参考解答
    东北师范大学2020年数学分析考研试题参考解答
    丁同仁常微分方程第一版习题参考解答
    电子科技大学2020年数学分析考研试题参考解答
    点集拓扑课件/作业/作业讲解
    毕业论文[博士]不可压缩流体动力学方程组的若干正则性条件
    毕业论文[本科]笛卡尔积上的拓扑学
    Ibragimov微分方程与数学物理问题习题参考解答
    Evans Partial Differential Equations 第一版第1-3章笔记及习题解答
    [Tex模板]Annales Polonici Mathematici
  • 原文地址:https://www.cnblogs.com/InedibleKonjac/p/12654959.html
Copyright © 2011-2022 走看看