zoukankan      html  css  js  c++  java
  • 模板

    一种可以在区间上找名次的数据结构。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    namespace Treap {
    #define ls ch[id][0]
    #define rs ch[id][1]
        const int INF = 2147483647;
        const int N = 5e4 + 5;
        const int MAXN = 25 * N;
        //每个元素会被覆盖若干次线段树有log层,每层的平衡树的长度和都是n,按道理说是精确的nlogn,但这里还是开尽可能大
        int ch[MAXN][2], dat[MAXN];
    
        int val[MAXN];
        int cnt[MAXN];
        int siz[MAXN];
    
        int tot;
    
        inline void Init() {
            tot = 0;
        }
    
        inline int NewNode(int v, int num) {
            int id = ++tot;
            ls = rs = 0;
            dat[id] = rand();
            val[id] = v;
            cnt[id] = num;
            siz[id] = num;
            return id;
        }
    
        inline void PushUp(int id) {
            siz[id] = siz[ls] + siz[rs] + cnt[id];
        }
    
        inline void Rotate(int &id, int d) {
            int temp = ch[id][d ^ 1];
            ch[id][d ^ 1] = ch[temp][d];
            ch[temp][d] = id;
            id = temp;
            PushUp(ch[id][d]);
            PushUp(id);
        }
    
        //插入num个v
        inline void Insert(int &id, int v, int num) {
            if(!id)
                id = NewNode(v, num);
            else {
                if(v == val[id])
                    cnt[id] += num;
                else {
                    int d = val[id] > v ? 0 : 1;
                    Insert(ch[id][d], v, num);
                    if(dat[id] < dat[ch[id][d]])
                        Rotate(id, d ^ 1);
                }
                PushUp(id);
            }
        }
    
        //删除至多num个v
        void Remove(int &id, int v, int num) {
            if(!id)
                return;
            else {
                if(v == val[id]) {
                    if(cnt[id] > num) {
                        cnt[id] -= num;
                        PushUp(id);
                    } else if(ls || rs) {
                        if(!rs || dat[ls] > dat[rs])
                            Rotate(id, 1), Remove(rs, v, num);
                        else
                            Rotate(id, 0), Remove(ls, v, num);
                        PushUp(id);
                    } else
                        id = 0;
                } else {
                    val[id] > v ? Remove(ls, v, num) : Remove(rs, v, num);
                    PushUp(id);
                }
            }
        }
    
        //查询严格<v的数的个数(和普通平衡树不一样
        int GetRank(int id, int v) {
            int res = 0;
            while(id) {
                if(val[id] > v)
                    id = ls;
                else if(val[id] == v) {
                    res += siz[ls];
                    break;
                } else {
                    res += siz[ls] + cnt[id];
                    id = rs;
                }
            }
            return res;
        }
    
        //查询树中的<=x的数的个数有至少rk个的最小的x
        int GetValue(int id, int rk) {
            int res = INF;
            while(id) {
                if(siz[ls] >= rk)
                    id = ls;
                else if(siz[ls] + cnt[id] >= rk) {
                    res = val[id];
                    break;
                } else {
                    rk -= siz[ls] + cnt[id];
                    id = rs;
                }
            }
            return res;
        }
    
        //查询v的前驱的值(<v的第一个节点的值),不存在前驱返回负无穷
        int GetPrev(int id, int v) {
            int res = -INF;
            while(id) {
                if(val[id] < v)
                    res = val[id], id = rs;
                else
                    id = ls;
            }
            return res;
        }
    
        //查询v的后继的值(>v的第一个节点的值),不存在后继返回无穷
        int GetNext(int id, int v) {
            int res = INF;
            while(id) {
                if(val[id] > v)
                    res = val[id], id = ls;
                else
                    id = rs;
            }
            return res;
        }
    #undef ls
    #undef rs
    }
    
    namespace SegmentTree {
    #define ls (p<<1)
    #define rs (p<<1|1)
        const int INF = 2147483647;
        const int MAXN = 5e4 + 5;
        int n, m, a[MAXN];
        struct SegmentTreeNode {
            int l, r;
            int root;
        } st[MAXN * 4];
        //线段树的大小是精确的4倍
    
        void Build(int p, int l, int r) {
            st[p].l = l, st[p].r = r;
            for (int i = l; i <= r ; ++i)
                Treap::Insert(st[p].root, a[i], 1);
            if(l == r)
                return;
            int mid = l + r >> 1;
            Build(ls, l, mid);
            Build(rs, mid + 1, r);
        }
    
        void Update(int p, int pos, int v) {
            Treap::Remove(st[p].root, a[pos], 1);
            Treap::Insert(st[p].root, v, 1);
            if (st[p].l == st[p].r)
                return;
            int mid = st[p].l + st[p].r >> 1;
            if(pos <= mid)
                Update(ls, pos, v);
            else
                Update(rs, pos, v);
        }
    
        //查询严格<v的数的个数(和普通平衡树不一样
        int GetRank(int p, int l, int r, int v) {
            if (st[p].l > r || st[p].r < l)
                return 0;
            if (st[p].l >= l && st[p].r <= r)
                return Treap::GetRank(st[p].root, v);
            else
                //很明显是满足结合律的
                return GetRank(ls, l, r, v) + GetRank(rs, l, r, v) ;
        }
    
        //查询区间中的<=x的数的个数有至少rk个的最小的x
        int GetValue(int l, int r, int k) {
            int L = 0, R = 1e8;
            while(1) {
                int mid = L + R  >> 1;
                if(L == mid)
                    return L;
                //小于k,也有可能mid是刚刚好的,比如mid有连续的一段
                if(GetRank(1, l, r, mid) < k)
                    L = mid;
                else
                    R = mid;
            }
        }
    
        int GetPrev(int p, int l, int r, int k) {
            if (st[p].l > r || st[p].r < l)
                return -INF;
            if (st[p].l >= l && st[p].r <= r)
                return Treap::GetPrev(st[p].root, k);
            else
                //很明显是满足结合律的
                return max(GetPrev(ls, l, r, k), GetPrev(rs, l, r, k));
        }
    
        int GetNext(int p, int l, int r, int k) {
            if (st[p].l > r || st[p].r < l)
                return INF;
            if (st[p].l >= l && st[p].r <= r)
                return Treap::GetNext(st[p].root, k);
            else
                //很明显是满足结合律的
                return min(GetNext(ls, l, r, k), GetNext(rs, l, r, k));
        }
    #undef ls
    #undef rs
    }
    
    int main() {
        int n, m;
        scanf("%d%d", &n, &m);
        SegmentTree::n = n;
        for (int i = 1; i <= n ; ++i)
            scanf("%d", &SegmentTree::a[i]);
    
        SegmentTree::Build(1, 1, n);
        for (int i = 1; i <= m; ++i) {
            int opt, l, k, r, pos;
            scanf("%d", &opt);
            switch(opt) {
            case 1:
                scanf("%d%d%d", &l, &r, &k);
                printf("%d
    ", SegmentTree::GetRank(1, l, r, k) + 1);
                break;
            case 2:
                scanf("%d%d%d", &l, &r, &k);
                printf("%d
    ", SegmentTree::GetValue(l, r, k));
                break;
            case 3:
                scanf("%d%d", &pos, &k);
                SegmentTree::Update(1, pos, k);
                SegmentTree::a[pos] = k;
                break;
            case 4:
                scanf("%d%d%d", &l, &r, &k);
                printf("%d
    ", SegmentTree::GetPrev(1, l, r, k));
                break;
            case 5:
                scanf("%d%d%d", &l, &r, &k);
                printf("%d
    ", SegmentTree::GetNext(1, l, r, k));
                break;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    CentOS搭建nginx环境
    Gitment评论插件的使用
    GitPages部署自己的网站
    ubuntu防火墙规则之ufw
    鸟哥的Linux私房菜笔记第六章(二)
    一次使用InfluxDB数据库的总结
    网站实现markdown功能
    鸟哥的Linux私房菜笔记第六章(一)
    Flutter学习笔记(21)--TextField文本框组件和Card卡片组件
    Flutter学习笔记(20)--FloatingActionButton、PopupMenuButton、SimpleDialog、AlertDialog、SnackBar
  • 原文地址:https://www.cnblogs.com/Inko/p/11414166.html
Copyright © 2011-2022 走看看