一道基环树的直径
BZOJ原题链接
洛谷原题链接
又是一道实现贼麻烦的题。。
显然公园其实是基环树森林,求的最长距离其实就是求每一棵基环树的直径的总和。
对于每棵基环树,其直径要么经过环,要么是某个环上点的子树的直径。所以我们可以先找出它的环,然后对环上的每个点进行(dfs)(不能经过环上的点),找出该点的子树的直径和数组(D),表示该点到子树中的叶子节点的最大距离。
然后考虑经过环的距离,设当前枚举到两个点(x,y),则长度为(D[x]+D[y]+dis(x,y)),这个可以通过单调队列来优化,维护一个最大值即可。
#include<cstdio>
using namespace std;
const int N = 1e6 + 10;
typedef long long ll;
int fi[N], di[N << 1], da[N << 1], ne[N << 1], cr[N], cr_d[N], q[N << 1], po[N << 1], l, cb, fp, n;
ll D[N], dis[N << 1], fr;
bool v[N], egv[N << 1], vis[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p |= c == '-';
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
inline ll maxn(ll x, ll y)
{
return x > y ? x : y;
}
void dfs(int x)
{
int i, y;
v[x] = 1;
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (!egv[i])
{
cr[y] = x;
cr_d[y] = da[i];
egv[i] = egv[i & 1 ? i + 1 : i - 1] = 1;
if (v[y])
cb = y;
dfs(y);
}
}
}
void dfs_2(int x, ll d, int fa)
{
int i, y;
if (fr < d)
{
fr = d;
fp = x;
}
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (!vis[y] && y != fa)
{
dfs_2(y, d + da[i], x);
D[x] = maxn(D[x], D[y] + da[i]);
}
}
}
void dfs_3(int x, ll d, int fa)
{
int i, y;
fr = maxn(fr, d);
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (!vis[y] && y != fa)
dfs_3(y, d + da[i], x);
}
}
int main()
{
int i, j, x, y, k, head, tail;
ll s = 0, ma;
n = re();
for (i = 1; i <= n; i++)
{
x = re();
y = re();
add(i, x, y);
add(x, i, y);
}
for (i = 1; i <= n; i++)
if (!v[i])
{
ma = 0;
dfs(i);
j = cb;
k = 0;
do
{
vis[j] = 1;
k++;
dis[k + 1] = dis[k] + cr_d[j];
po[k] = j;
j = cr[j];
} while (j^cb);
do
{
vis[j] = 0;
fr = 0;
dfs_2(j, 0, 0);
fr = 0;
dfs_3(fp, 0, 0);
vis[j] = 1;
ma = maxn(ma, fr);
k++;
dis[k + 1] = dis[k] + cr_d[j];
po[k] = j;
j = cr[j];
} while (j^cb);
head = 1;
tail = 0;
for (j = 1; j <= k; j++)
{
while (j - q[head] >= (k >> 1))
head++;
if (head <= tail)
ma = maxn(ma, D[po[j]] + D[po[q[head]]] + dis[j] - dis[q[head]]);
else
ma = maxn(ma, D[po[j]]);
while (head < tail&&D[po[j]] - dis[j] >= D[po[q[tail]]] - dis[q[tail]])
tail--;
q[++tail] = j;
}
s += ma;
}
printf("%lld", s);
return 0;
}