zoukankan      html  css  js  c++  java
  • [BJWC2018]基础匹配算法练习题 [莫队+线段树]

    题目意思比较难描述,但是易懂…

    我们考虑到这是一个匹配问题,转换一下。

    由于题目说了是 (a_i + c_j leq z)(i)(j) 有一条边,那么发现 (a_i) 不变,我们就可以给 (a_i) 排序,然后因为数值是有单调性的,如果 (a_i + c_j leq z) ,那么 (a_k(1 leq kleq i)+ c_j leq z)

    那么我们想一个这个问题的转化: 给你 (n) 个位置 (m) 个物品,每个位置仅仅能放一个物品,第 (i) 个物品有一个限制,只能放到 ([1,p_i]) 里面,求最多能放多少个物品。

    容易证明,如果用 不基于排序 的做法做出这个转化版问题,就可以带上莫队做出这个原问题。

    我们想,假设你能放 (k) 个物品,采用最优策略。

    那么你 (p_i) 一定是选前 (k) 大的,依次放到 (1…k)

    (k) 大的放在位置 (1),那么显然 (p_k geq 1)

    (k-1) 大的放在位置 (2),那么 (p_{k-1}geq 2)

    ……

    (k + x - 1) 大的物品放在位置 (x) ,那么 (p_{k+x-1}geq x)

    也就是说 (p_x + x - 1 geq k)

    (x) 指的是区间第 (x) 大,就是有多少个数比他要大,而你可以通过线段树,对于每个 (p_i) ,区间加 ([1,p_i])

    由于 (k) 要满足所有条件,所以要取最小值。

    // powered by c++11
    // by Isaunoya
    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize("Ofast")
    #pragma GCC optimize( 
    	"inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2,-ffast-math,-fsched-spec,unroll-loops,-falign-jumps,-falign-loops,-falign-labels,-fdevirtualize,-fcaller-saves,-fcrossjumping,-fthread-jumps,-funroll-loops,-freorder-blocks,-fschedule-insns,inline-functions,-ftree-tail-merge,-fschedule-insns2,-fstrict-aliasing,-fstrict-overflow,-falign-functions,-fcse-follow-jumps,-fsched-interblock,-fpartial-inlining,no-stack-protector,-freorder-functions,-findirect-inlining,-fhoist-adjacent-loads,-frerun-cse-after-loop,inline-small-functions,-finline-small-functions,-ftree-switch-conversion,-foptimize-sibling-calls,-fexpensive-optimizations,inline-functions-called-once,-fdelete-null-pointer-checks")
    #include <bits/stdc++.h>
    #define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
    #define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
    using namespace std;
    using db = double;
    using ll = long long;
    using uint = unsigned int;
    #define Tp template
    using pii = pair<int, int>;
    #define fir first
    #define sec second
    Tp<class T> void cmax(T& x, const T& y) {if (x < y) x = y;} Tp<class T> void cmin(T& x, const T& y) {if (x > y) x = y;}
    #define all(v) v.begin(), v.end()
    #define sz(v) ((int)v.size())
    #define pb emplace_back
    Tp<class T> void sort(vector<T>& v) { sort(all(v)); } Tp<class T> void reverse(vector<T>& v) { reverse(all(v)); }
    Tp<class T> void unique(vector<T>& v) { sort(all(v)), v.erase(unique(all(v)), v.end()); }
    const int SZ = 1 << 23 | 233;
    struct FILEIN { char qwq[SZ], *S = qwq, *T = qwq, ch;
    #ifdef __WIN64
    #define GETC getchar
    #else
      char GETC() { return (S == T) && (T = (S = qwq) + fread(qwq, 1, SZ, stdin), S == T) ? EOF : *S++; }
    #endif
      FILEIN& operator>>(char& c) {while (isspace(c = GETC()));return *this;}
      FILEIN& operator>>(string& s) {while (isspace(ch = GETC())); s = ch;while (!isspace(ch = GETC())) s += ch;return *this;}
      Tp<class T> void read(T& x) { bool sign = 0;while ((ch = GETC()) < 48) sign ^= (ch == 45); x = (ch ^ 48);
        while ((ch = GETC()) > 47) x = (x << 1) + (x << 3) + (ch ^ 48); x = sign ? -x : x;
      }FILEIN& operator>>(int& x) { return read(x), *this; } FILEIN& operator>>(ll& x) { return read(x), *this; }
    } in;
    struct FILEOUT {const static int LIMIT = 1 << 22 ;char quq[SZ], ST[233];int sz, O;
      ~FILEOUT() { flush() ; }void flush() {fwrite(quq, 1, O, stdout); fflush(stdout);O = 0;}
      FILEOUT& operator<<(char c) {return quq[O++] = c, *this;}
      FILEOUT& operator<<(string str) {if (O > LIMIT) flush();for (char c : str) quq[O++] = c;return *this;}
      Tp<class T> void write(T x) {if (O > LIMIT) flush();if (x < 0) {quq[O++] = 45;x = -x;}
    		do {ST[++sz] = x % 10 ^ 48;x /= 10;} while (x);while (sz) quq[O++] = ST[sz--];
      }FILEOUT& operator<<(int x) { return write(x), *this; } FILEOUT& operator<<(ll x) { return write(x), *this; }
    } out;
    int n , m , z , Q ;
    const int maxn = 2e5 + 52 ;
    int a[maxn] , b[maxn] ;
    
    const int S = 250 ;
    int bl[maxn] ;
    struct Que {
    	int l , r , id ;
    	bool operator < (const Que & other) const {
    		if(bl[l] != bl[other.l]) return l < other.l ;
    		return bl[l] & 1 ? r > other.r : r < other.r ;
    	}
    } q[maxn] ;
    
    struct smt {
    	int t[maxn << 2] , tag[maxn << 2] ;
    	void build(int l , int r , int p) {
    		if(l == r) {
    			t[p] = l ;
    			return ;
    		}
    		int mid = l + r >> 1 ;
    		build(l , mid , p << 1) ;
    		build(mid + 1 , r , p << 1 | 1) ;
    		t[p] = min(t[p << 1] , t[p << 1 | 1]) ;
    	}
    	inline void pushdown(int p) {
    		if(tag[p]) {
    			tag[p << 1] += tag[p] ;
    			tag[p << 1 | 1] += tag[p] ;
    			t[p << 1] += tag[p] ;
    			t[p << 1 | 1] += tag[p] ;
    			tag[p] = 0 ;
    		}
    	}
    	void change(int a , int b , int l , int r , int p , int v) {
    		if(a <= l && r <= b) {
    			tag[p] += v , t[p] += v ;
    			return ;
    		}
    		pushdown(p) ;
    		int mid = l + r >> 1 ;
    		if(a <= mid) change(a , b , l , mid , p << 1 , v) ;
    		if(b > mid) change(a , b , mid + 1 , r , p << 1 | 1 , v) ;
    		t[p] = min(t[p << 1] , t[p << 1 | 1]) ;
    	} 
    } qwq ;
    inline void ins(const int & x) {
    	int y = b[x] ;
    	if(y) qwq.change(1 , y , 1 , n , 1 , 1) ;
    }
    inline void del(const int & x) {
    	int y = b[x] ;
    	if(y) qwq.change(1 , y , 1 , n , 1 , -1) ;
    }
    int ans[maxn] ;
    signed main() {
      // code begin.
    	in >> n >> m >> z ;
    	rep(i , 1 , n) in >> a[i] ; sort(a + 1 , a + n + 1) ; qwq.build(1 , n , 1) ;
    	rep(i , 1 , m) in >> b[i] ; rep(i , 1 , m) bl[i] = (i - 1) / S + 1 ;
    	rep(i , 1 , m) b[i] = upper_bound(a + 1 , a + n + 1 , z - b[i]) - a - 1 ;
    	in >> Q ; rep(i , 1 , Q) in >> q[i].l >> q[i].r , q[i].id = i ;
    	sort(q + 1 , q + Q + 1) ; int l = 1 , r = 0 ; rep(i , 1 , Q) {
    		while(l > q[i].l) ins(-- l) ; while(l < q[i].l) del(l ++) ;
    		while(r < q[i].r) ins(++ r) ; while(r > q[i].r) del(r --) ;
    		ans[q[i].id] = qwq.t[1] ;
    	}
    	rep(i , 1 , Q) out << ans[i] - 1 << '
    ' ;
    	return 0;
      // code end.
    }
    
  • 相关阅读:
    struts2 DMI
    MFC添加背景图片
    c++ 副本构造器
    climits
    Qt中的qreal
    Http概述(一)
    重构学习-重构原则
    QDir的mkdir和mkpath区别
    Qt学习笔记网络(一)
    Qt5 新特性
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/12459233.html
Copyright © 2011-2022 走看看