题意:
我们定义 (forall i ,s_i) 是给定串 (S) 的子串,且 (s_{i-1}) 在 (s_{i}) 要出现至少两次。求最大的 (k),使得 (forall i,s_i in S)。
sol:
我们考虑到,对于一个点 (i),(fa_i) 是 (i) 的子串,并且是后缀,我们定义 (g_i) 是上次匹配到的点,(f_i) 是匹配到这个点的最长长度,那么一定是能匹配就匹配,这样显然是最优的,不能就复制父节点信息接着往下玩。
我们考虑到 (1) ~ (i) 的一条链上后缀都相同但是长度不同。
然后我们要考虑如果 (g_u) 的子树包含 (v),那么 (g_u) 对应的字符串在 (v) 对应的字符串 出现了一次,易证。
所以我们只需要线段树合并出来每个点 (i) 的子树信息就可以了。就是说哪个出现过哪个没出现过。
然后的话我们就考虑一下另一次出现怎么求呢。显然你出现的位置是 (pos_v) 那么我们要把 (pos_v) 这个点去掉。并且我们要在 ([pos_v - len_v + len_{g_u} , pos_v - 1]) 这段区间内找到点。
为什么,我们考虑一下,(len_v) 是 (v) 所对应的字符串的长度,那么 (len_{g_u}) 同理,因为你的上个转移点是 (g_u) 所以显然是 (g_u) 但是长度至少为 (len_{g_u}) 所以最后一个点必须在 (pos_v - len_v + len_{g_u}) 后面。
代码挺好写的.jpg
code:
// clang-format off
// powered by c++11
// by Isaunoya
#include<bits/stdc++.h>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define Rep(i,x,y) for(register int i=(x);i>=(y);--i)
using namespace std;using db=double;using ll=long long;
using uint=unsigned int;using ull=unsigned long long;
using pii=pair<int,int>;
#define Tp template
#define fir first
#define sec second
Tp<class T>void cmax(T&x,const T&y){if(x<y)x=y;}Tp<class T>void cmin(T&x,const T&y){if(x>y)x=y;}
#define all(v) v.begin(),v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
Tp<class T>void sort(vector<T>&v){sort(all(v));}Tp<class T>void reverse(vector<T>&v){reverse(all(v));}
Tp<class T>void unique(vector<T>&v){sort(all(v)),v.erase(unique(all(v)),v.end());}inline void reverse(string&s){reverse(s.begin(),s.end());}
const int SZ=1<<23|233;
struct FILEIN{char qwq[SZ],*S=qwq,*T=qwq,ch;
#ifdef __WIN64
#define GETC getchar
#else
inline char GETC(){return(S==T)&&(T=(S=qwq)+fread(qwq,1,SZ,stdin),S==T)?EOF:*S++;}
#endif
inline FILEIN&operator>>(char&c){while(isspace(c=GETC()));return*this;}inline FILEIN&operator>>(string&s){s.clear();while(isspace(ch=GETC()));if(!~ch)return*this;s=ch;while(!isspace(ch=GETC())&&~ch)s+=ch;return*this;}
inline FILEIN&operator>>(char*str){char*cur=str;while(*cur)*cur++=0;cur=str;while(isspace(ch=GETC()));if(!~ch)return*this;*cur=ch;while(!isspace(ch=GETC())&&~ch)*++cur=ch;*++cur=0;return*this;}
Tp<class T>inline void read(T&x){bool f=0;while((ch=GETC())<48&&~ch)f^=(ch==45);x=~ch?(ch^48):0;while((ch=GETC())>47)x=x*10+(ch^48);x=f?-x:x;}
inline FILEIN&operator>>(int&x){return read(x),*this;}inline FILEIN&operator>>(ll&x){return read(x),*this;}inline FILEIN&operator>>(uint&x){return read(x),*this;}inline FILEIN&operator>>(ull&x){return read(x),*this;}
inline FILEIN&operator>>(double&x){read(x);bool f=x<0;x=f?-x:x;if(ch^'.')return*this;double d=0.1;while((ch=GETC())>47)x+=d*(ch^48),d*=.1;return x=f?-x:x,*this;}
}in;
struct FILEOUT{const static int LIMIT=1<<22;char quq[SZ],ST[233];int sz,O,pw[233];
FILEOUT(){set(7);rep(i,pw[0]=1,9)pw[i]=pw[i-1]*10;}~FILEOUT(){flush();}
inline void flush(){fwrite(quq,1,O,stdout),fflush(stdout),O=0;}
inline FILEOUT&operator<<(char c){return quq[O++]=c,*this;}inline FILEOUT&operator<<(string str){if(O>LIMIT)flush();for(char c:str)quq[O++]=c;return*this;}
inline FILEOUT&operator<<(char*str){if(O>LIMIT)flush();char*cur=str;while(*cur)quq[O++]=(*cur++);return*this;}
Tp<class T>void write(T x){if(O>LIMIT)flush();if(x<0){quq[O++]=45;x=-x;}do{ST[++sz]=x%10^48;x/=10;}while(x);while(sz)quq[O++]=ST[sz--];}
inline FILEOUT&operator<<(int x){return write(x),*this;}inline FILEOUT&operator<<(ll x){return write(x),*this;}inline FILEOUT&operator<<(uint x){return write(x),*this;}inline FILEOUT&operator<<(ull x){return write(x),*this;}
int len,lft,rig;void set(int l){len=l;}inline FILEOUT&operator<<(double x){bool f=x<0;x=f?-x:x,lft=x,rig=1.*(x-lft)*pw[len];return write(f?-lft:lft),quq[O++]='.',write(rig),*this;}
}out;
#define int long long
struct Math{
vector<int>fac,inv;int mod;
void set(int n,int Mod){fac.resize(n+1),inv.resize(n+1),mod=Mod;rep(i,fac[0]=1,n)fac[i]=fac[i-1]*i%mod;inv[n]=qpow(fac[n],mod-2);Rep(i,n-1,0)inv[i]=inv[i+1]*(i+1)%mod;}
int qpow(int x,int y){int ans=1;for(;y;y>>=1,x=x*x%mod)if(y&1)ans=ans*x%mod;return ans;}int C(int n,int m){if(n<0||m<0||n<m)return 0;return fac[n]*inv[m]%mod*inv[n-m]%mod;}
int gcd(int x,int y){return!y?x:gcd(y,x%y);}int lcm(int x,int y){return x*y/gcd(x,y);}
}math;
// clang-format on
int n;
const int maxn = 4e5 + 54;
char s[maxn];
int rt[maxn];
struct SegMentTree {
const static int maxnode = maxn << 5;
int ls[maxnode], rs[maxnode], cnt;
SegMentTree() { cnt = 0; }
void upd(int& p, int l, int r, int x) {
if (!p) p = ++cnt;
if (l == r) return;
int mid = l + r >> 1;
if (x <= mid)
upd(ls[p], l, mid, x);
else
upd(rs[p], mid + 1, r, x);
}
int merge(int x, int y) {
if (!x || !y) return x | y;
int qwq = ++cnt;
ls[qwq] = merge(ls[x], ls[y]);
rs[qwq] = merge(rs[x], rs[y]);
return qwq;
}
int qry(int p, int a, int b, int l, int r) {
if (!p) return 0;
if (a <= l && r <= b) return 1;
int mid = l + r >> 1, ans = 0;
if (a <= mid) ans += qry(ls[p], a, b, l, mid);
if (b > mid) ans += qry(rs[p], a, b, mid + 1, r);
return ans;
}
} smt;
int ans = 1;
struct SAM {
int ch[maxn][26], fa[maxn], len[maxn], pos[maxn], las, cnt;
SAM() { las = cnt = 1; }
void add(int c, int id) {
int p = las, np = las = ++cnt;
pos[np] = id, len[np] = len[p] + 1, smt.upd(rt[np], 1, n, id);
for (; p && !ch[p][c]; p = fa[p]) ch[p][c] = np;
if (!p) {
fa[np] = 1;
} else {
int q = ch[p][c];
if (len[q] == len[p] + 1) {
fa[np] = q;
} else {
int nq = ++cnt;
memcpy(ch[nq], ch[q], sizeof(ch[q]));
pos[nq] = pos[q], fa[nq] = fa[q], fa[q] = fa[np] = nq, len[nq] = len[p] + 1;
for (; p && ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
}
}
}
vector<int> g[maxn];
void dfs(int u) {
for (int v : g[u]) {
dfs(v);
rt[u] = smt.merge(rt[u], rt[v]);
}
}
void build(char* s) {
char* cur = s;
int id = 0;
while (*cur) {
int c = (*cur++) - 'a';
add(c, ++id);
}
rep(i, 2, cnt) g[fa[i]].pb(i);
}
int f[maxn], G[maxn];
void dfs2(int u) {
for (int v : g[u]) {
if (fa[v] == 1) {
f[v] = 1, G[v] = v;
} else {
if (smt.qry(rt[G[u]], pos[v] - (len[v] - len[G[u]]), pos[v] - 1, 1, n))
f[v] = f[u] + 1, G[v] = v;
else
f[v] = f[u], G[v] = G[u];
}
dfs2(v);
}
cmax(ans, f[u]);
}
} sam;
signed main() {
// code begin.
in >> n >> s, sam.build(s), sam.dfs(1), sam.dfs2(1);
out << ans << '
';
return 0;
// code end.
}