zoukankan      html  css  js  c++  java
  • 题解 P3911 【最小公倍数之和】

    (cnt_i)(i) 的出现次数。

    则这题要求的是 (sum_{i=1}^{N} sum_{j=1}^{N} lcm(i, j) imes cnt_i imes cnt_j)

    (left( lcm (i,j) = frac{ij}{gcd(i,j)} ight))

    (sum_{i=1}^{N} sum_{j=1}^{N} frac{ij}{gcd(i,j)} imes cnt_i imes cnt_j)

    枚举 (gcd)

    (sum_{d=1}^{N} sum_{i=1}^{N/d} sum_{j=1}^{N/d} [gcd(i,j) =1]d imes ij imes cnt_{id} imes cnt_{jd})

    (sum_{k|n} mu_k = [n==1])

    (sum_{d=1}^{N} sum_{i=1}^{N/d} sum_{j=1}^{N/d} sum_{k|gcd(i,j)}mu_k imes d imes ij imes cnt_{id} imes cnt_{jd})

    枚举 (k)

    (sum_{d=1}^{N} sum_{k=1}^{N/d}sum_{i=1}^{n/kd}sum_{j=1}^{n/kd}mu_k imes d imes k^2 imes i imes j imes cnt_{idk} imes cnt_{jdk})

    (T = dk)

    (sum_{T=1}^{N} T imes left(sum_{i=1}^{N/T} i imes cnt_{iT} ight)^2 sum_{k|T} mu_k imes k)

    然后就做完了。

  • 相关阅读:
    码云的安装和配置
    Python解释器安装教程和环境变量配置
    Python基础学习
    buuctf CheckIn
    各种小马收集
    buuctf Easysql 小记
    locust
    封装好的日志模块
    实用的测试网站
    列表操作
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/13502782.html
Copyright © 2011-2022 走看看