zoukankan      html  css  js  c++  java
  • LOJ2540 PKUWC2018 随机算法 状压DP

    传送门


    两种$DP$:

    ①$f_{i,j}$表示前$i$次选择,最大独立集为$j$时达到最大独立集的方案总数,转移:$a.f_{i,j}+=f_{i+1,j+2^k}$(保证$k$加入后符合条件);$b.f_{i,j}+=f_{i+1,j} imes ext{现在可以放的不影响最大独立集的点的数量}$,这个现在可以放的不影响最大独立集的点的数量就是不可选择的点(即已经选择和与已经选择的点相邻的点)的数量$-i$

    复杂度$O(2^nn^2)$而且似乎无法优化

      1 #include<bits/stdc++.h>
      2 //This code is written by Itst
      3 using namespace std;
      4 
      5 inline int read(){
      6     int a = 0;
      7     bool f = 0;
      8     char c = getchar();
      9     while(c != EOF && !isdigit(c)){
     10         if(c == '-')
     11             f = 1;
     12         c = getchar();
     13     }
     14     while(c != EOF && isdigit(c)){
     15         a = (a << 3) + (a << 1) + (c ^ '0');
     16         c = getchar();
     17     }
     18     return f ? -a : a;
     19 }
     20 
     21 const int MOD = 998244353;
     22 bool can[21][1 << 20] , edge[21][21] , choose[21];
     23 int dp[21][1 << 20] , cnt1[1 << 20] , N , M , maxN , logg2[1 << 21];
     24 
     25 inline int poww(long long a , int b){
     26     int times = 1;
     27     while(b){
     28         if(b & 1)
     29             times = times * a % MOD;
     30         a = a * a % MOD;
     31         b >>= 1;
     32     }
     33     return times;
     34 }
     35 
     36 void dfs(int now , int size){
     37     if(N - now + size <= maxN)
     38         return;
     39     if(now == N){
     40         maxN = size;
     41         return;
     42     }
     43     dfs(now + 1 , size);
     44     for(int i = 0 ; i < now ; ++i)
     45         if(choose[i] && edge[i][now])
     46             return;
     47     choose[now] = 1;
     48     dfs(now + 1 , size + 1);
     49     choose[now] = 0;
     50 }
     51 
     52 int main(){
     53 #ifndef ONLINE_JUDGE
     54     freopen("2540.in" , "r" , stdin);
     55     //freopen("2540.out" , "w" , stdout);
     56 #endif
     57     N = read();
     58     logg2[0] = -1;
     59     for(int i = 1 ; i < (1 << N) ; ++i){
     60         cnt1[i] = cnt1[i - (i & -i)] + 1;
     61         logg2[i] = logg2[i >> 1] + 1;
     62     }
     63     for(M = read() ; M ; --M){
     64         int a = read() - 1 , b = read() - 1;
     65         edge[a][b] = edge[b][a] = 1;
     66     }
     67     dfs(0 , 0);
     68     for(int i = 0 ; i < N ; ++i){
     69         can[i][0] = 1;
     70         for(int j = 1 ; j < (1 << N) ; ++j)
     71             if(!(j & (1 << i)))
     72                 if(can[i][j - (j & -j)]){
     73                     int minN = logg2[j & -j];
     74                     if(!edge[i][minN])
     75                         can[i][j] = 1;
     76                 }
     77     }
     78     for(int i = 1 ; i < (1 << N) ; ++i)
     79         if(cnt1[i] == maxN)
     80             dp[N][i] = 1;
     81     for(int i = N - 1 ; i ; --i)
     82         for(int j = 1 ; j < (1 << N) ; ++j)
     83             if(cnt1[j] <= i && cnt1[j] <= maxN){
     84                 int cnt = 0;
     85                 for(int p = ((1 << N) - 1) ^ j ; p ; p ^= p & -p){
     86                     int k = logg2[p & -p];
     87                     if(can[k][j])
     88                         dp[i][j] = (dp[i][j] + dp[i + 1][j | (1 << k)]) % MOD;
     89                     else
     90                         ++cnt;
     91                 }
     92                 dp[i][j] = (dp[i][j] + 1ll * dp[i + 1][j] * (cnt + cnt1[j] - i)) % MOD;
     93             }
     94     long long sum = 0 , ans = 1;
     95     for(int i = 0 ; i < N ; ++i)
     96         sum = (sum + dp[1][1 << i]) % MOD;
     97     for(int i = 2 ; i <= N ; ++i)
     98         ans = ans * i % MOD;
     99     cout << sum * poww(ans , MOD - 2) % MOD;
    100     return 0;
    101 }
    View Code

    ②$f_{j}$表示当前已经无法选择(即已经选择和与已经选择的点相邻的点)的集合为$j$时、独立集取到最大的方案数,设$w_i$表示与$i$相邻(包括$i$)的点集,则有转移:$f_{S cup w_i}+=f_{S} imes P_{N - |S| - 1}^{|S| - |S cap w_i| - 1}$,记得要满足最大独立集大小要是最大的。

    复杂度$O(2^nn)$

     1 #include<bits/stdc++.h>
     2 //This code is written by Itst
     3 using namespace std;
     4 
     5 inline int read(){
     6     int a = 0;
     7     bool f = 0;
     8     char c = getchar();
     9     while(c != EOF && !isdigit(c)){
    10         if(c == '-')
    11             f = 1;
    12         c = getchar();
    13     }
    14     while(c != EOF && isdigit(c)){
    15         a = (a << 3) + (a << 1) + (c ^ '0');
    16         c = getchar();
    17     }
    18     return f ? -a : a;
    19 }
    20 
    21 const int MOD = 998244353;
    22 long long dp[1 << 21] , maxN[1 << 21] , cnt1[1 << 21] , need[21] , jc[21] = {1} , ny[21] = {1} , N , M;
    23 
    24 inline int poww(long long a , int b){
    25     int times = 1;
    26     while(b){
    27         if(b & 1)
    28             times = times * a % MOD;
    29         a = a * a % MOD;
    30         b >>= 1;
    31     }
    32     return times;
    33 }
    34 
    35 int main(){
    36 #ifndef ONLINE_JUDGE
    37     freopen("2540.in" , "r" , stdin);
    38     //freopen("2540.out" , "w" , stdout);
    39 #endif
    40     N = read();
    41     for(int i = 1 ; i < 1 << N ; ++i)
    42         cnt1[i] = cnt1[i - (i & -i)] + 1;
    43     jc[1] = ny[1] = 1;
    44     for(int i = 2 ; i <= N ; ++i)
    45         jc[i] = jc[i - 1] * i % MOD;
    46     ny[N] = poww(jc[N] , MOD - 2);
    47     for(int i = N - 1 ; i > 1 ; --i)
    48         ny[i] = ny[i + 1] * (i + 1) % MOD;
    49     for(int i = 0 ; i < N ; ++i)
    50         need[i] = 1 << i;
    51     for(M = read() ; M ; --M){
    52         int a = read() - 1 , b = read() - 1;
    53         need[a] |= 1 << b;
    54         need[b] |= 1 << a;
    55     }
    56     dp[0] = 1;
    57     for(int i = 0 ; i + 1 < (1 << N) ; ++i)
    58         for(int j = 0 ; j < N ; ++j)
    59             if(!(i & (1 << j)) && maxN[i] + 1 >= maxN[i | need[j]]){
    60                 if(maxN[i] + 1 > maxN[i | need[j]]){
    61                     maxN[i | need[j]] = maxN[i] + 1;
    62                     dp[i | need[j]] = 0;
    63                 }
    64                 dp[i | need[j]] = (dp[i | need[j]] + dp[i] * jc[N - cnt1[i] - 1] % MOD * ny[N - cnt1[i] - 1 - (cnt1[need[j]] - cnt1[i & need[j]] - 1)]) % MOD;
    65             }
    66     cout << dp[(1 << N) - 1] * ny[N] % MOD;
    67     return 0;
    68 }
    View Code
  • 相关阅读:
    CentOS 7.x时间同步服务chrony配置详解
    Kerbernetes使用ConfigMap资源配置非铭感信息
    Kerbernetes的volume应用进阶
    Kerbernetes的volume基础应用
    Kerbernetes的Ingress资源管理
    Kerbernetes的Service资源管理
    Kerbernetes的Pod控制器
    一份较为详细的深度学习资料汇总
    相见恨晚的网站
    Bert 时代的创新(应用篇):Bert 在 NLP 各领域的
  • 原文地址:https://www.cnblogs.com/Itst/p/10046790.html
Copyright © 2011-2022 走看看