zoukankan      html  css  js  c++  java
  • BZOJ3514 / Codechef GERALD07 Chef and Graph Queries LCT、主席树

    传送门——BZOJ

    传送门——VJ


    考虑使用LCT维护时间最大生成树,那么对于第(i)条边,其加入时可能会删去一条边。记(pre_i)表示删去的边的编号,如果不存在则(pre_i = 0),如果是自环则(pre_i = i)

    因为连通块数量等于点数减树边数量,而对于一组询问([l,r]),当(pre_i < l leq i leq r)的时候就会在这张图上额外增加一条树边。所以我们只需要使用主席树做一个二维数点就可以了。

    时空复杂度(O(nlogn))

    #include<bits/stdc++.h>
    using namespace std;
     
    int read(){
        int a = 0; char c = getchar(); bool f = 0;
        while(!isdigit(c)){f = c == '-'; c = getchar();}
        while(isdigit(c)){
            a = a * 10 + c - 48; c = getchar();
        }
        return f ? -a : a;
    }
     
    const int _ = 4e5 + 7;
     
    namespace segt{
        const int __ = _ * 30;
        int sum[__] , lch[__] , rch[__] , cnt;
     
    #define mid ((l + r) >> 1)
         
        void modify(int &x , int l , int r , int tar){
            int t = ++cnt; sum[t] = sum[x] + 1; lch[t] = lch[x]; rch[t] = rch[x]; x = t;
            if(l == r) return;
            mid >= tar ? modify(lch[x] , l , mid , tar) : modify(rch[x] , mid + 1 , r , tar);
        }
     
        int qry(int x , int l , int r , int L , int R){
            if(!x || l >= L && r <= R) return sum[x];
            int sum = 0;
            if(mid >= L) sum = qry(lch[x] , l , mid , L , R);
            if(mid < R) sum += qry(rch[x] , mid + 1 , r , L , R);
            return sum;
        }
    }using segt::modify; using segt::qry;
     
    namespace LCT{
        int fa[_] , ch[_][2] , val[_] , mn[_]; bool rmrk[_];
     
        bool nroot(int x){return ch[fa[x]][0] == x || ch[fa[x]][1] == x;}
        bool son(int x){return ch[fa[x]][1] == x;}
        void up(int x){mn[x] = min(min(ch[x][0] ? mn[ch[x][0]] : (int)1e9 , ch[x][1] ? mn[ch[x][1]] : (int)1e9) , val[x]);}
        void mark(int x){rmrk[x] ^= 1; swap(ch[x][0] , ch[x][1]);}
        void down(int x){if(rmrk[x]){mark(ch[x][0]); mark(ch[x][1]); rmrk[x] = 0;}}
        void dall(int x){if(nroot(x)) dall(fa[x]); down(x);}
         
        void rot(int x){
            bool f = son(x); int y = fa[x] , z = fa[y] , w = ch[x][f ^ 1];
            fa[x] = z; if(nroot(y)) ch[z][son(y)] = x;
            fa[y] = x; ch[x][f ^ 1] = y;
            ch[y][f] = w; if(w) fa[w] = y;
            up(y);
        }
     
        void splay(int x){
            dall(x);
            while(nroot(x)){
                if(nroot(fa[x])) rot(son(fa[x]) == son(x) ? fa[x] : x);
                rot(x);
            }
            up(x);
        }
     
        void access(int x){for(int y = 0 ; x ; y = x , x = fa[x]){splay(x); ch[x][1] = y; if(y) fa[y] = x; up(x);}}
        void mkrt(int x){access(x); splay(x); mark(x);}
        void split(int x , int y){mkrt(x); access(y); splay(y);}
        void link(int x , int y){mkrt(x); fa[x] = y;}
        void cut(int x , int y){split(x , y); ch[y][0] = fa[x] = 0; up(y);}
        int fdrt(int x){access(x); splay(x); while(down(x) , ch[x][0]) x = ch[x][0]; splay(x); return x;}
    }using namespace LCT;
    int rt[_] , pre[_] , s[_] , t[_] , N , M , K , TP , lastans;
     
    int main(){
        N = read(); M = read(); K = read(); TP = read();
        for(int i = 1 ; i <= M ; ++i){
            s[i] = read() , t[i] = read(); LCT::val[i + N] = LCT::mn[i + N] = i;
        }
         
        for(int i = 1 ; i <= N ; ++i) LCT::val[i] = LCT::mn[i] = 1e9;
        for(int i = 1 ; i <= M ; ++i)
            if(s[i] != t[i]){
                if(fdrt(s[i]) == fdrt(t[i])){
                    split(s[i] , t[i]); int id = mn[t[i]];
                    pre[i] = id; cut(s[id] , id + N); cut(t[id] , id + N);
                }
                link(s[i] , i + N); link(t[i] , i + N);
            }
            else pre[i] = i;
     
        for(int i = 1 ; i <= M ; ++i) segt::modify(rt[i] = rt[i - 1] , 0 , M , pre[i]);
        for(int i = 1 ; i <= K ; ++i){
            int l = read() ^ (TP * lastans) , r = read() ^ (TP * lastans);
            printf("%d
    " , lastans = N - (segt::qry(rt[r] , 0 , M , 0 , l - 1) - (l - 1)));
        }
        return 0;
    }
    
  • 相关阅读:
    Java中的接口回调
    java中使用String的replace方法替换html模板保存文件
    overflow:解决 div的高度塌陷问题
    鼠标单击到 img行的时候图片隐藏方案
    HTML中的行级标签和块级标签 《转换》
    Java中的异常注意点
    oracle数据库忘记用户名和密码莫着急
    Log4j记录日志使用方法
    Java中的overload(方法的覆写)
    jdk和tomcat环境配置
  • 原文地址:https://www.cnblogs.com/Itst/p/11511713.html
Copyright © 2011-2022 走看看