zoukankan      html  css  js  c++  java
  • [USACO12FEB]附近的牛Nearby Cows

    题目描述

    Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

    Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

    FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

    给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

    输入输出格式

    输入格式:
    • Line 1: Two space-separated integers, N and K.

    • Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

    • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)
    输出格式:
    • Lines 1..N: Line i should contain the value of M(i).

    输入输出样例

    输入样例#1:
    6 2 
    5 1 
    3 6 
    2 4 
    2 1 
    3 2 
    1 
    2 
    3 
    4 
    5 
    6 
    
    输出样例#1:
    15 
    21 
    16 
    10 
    8 
    11 
    

    说明

    There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

    Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

    思路

    树形DP+容斥原理;

    代码实现

     1 #include<cstdio>
     2 const int maxn=1e5+1;
     3 const int maxm=2e5+1;
     4 int n,m;
     5 int f[maxn][30],ft[maxn];
     6 int s[maxn],ans[maxn];
     7 int h[maxn],hs;
     8 int et[maxm],en[maxm];
     9 void add(){
    10     int a,b;
    11     scanf("%d%d",&a,&b);
    12     et[++hs]=b,en[hs]=h[a],h[a]=hs;
    13     et[++hs]=a,en[hs]=h[b],h[b]=hs;
    14 }
    15 void dfs(int k,int fa){
    16     ft[k]=fa;
    17     for(int i=0;i<=m;i++) f[k][i]+=s[k];
    18     for(int i=h[k];i;i=en[i])
    19     if(et[i]!=fa){
    20         dfs(et[i],k);
    21         for(int j=1;j<=m;j++){
    22             f[k][j]+=f[et[i]][j-1];
    23         }
    24     }
    25 }
    26 int lca(int k,int son,int now){
    27     int ret=0;
    28     while(k&&now>=0){
    29         ret-=f[son][now-1],ret+=f[k][now];
    30         son=k,k=ft[son],now--;
    31     }
    32     return ret;
    33 }
    34 int main(){
    35     scanf("%d%d",&n,&m);
    36     for(int i=1;i<n;i++) add();
    37     for(int i=1;i<=n;i++) scanf("%d",&s[i]);
    38     dfs(1,0);
    39     for(int i=1;i<=n;i++){
    40         printf("%d
    ",lca(ft[i],i,m-1)+f[i][m]);
    41     }
    42     return 0;
    43 }
  • 相关阅读:
    Android中内容观察者的使用---- ContentObserver类详解 (转)
    Android应用中使用及实现系统“分享”接口
    logcat的调试 比较有用的几个命令
    ASP.NET AJAX入门系列(10):Timer控件简单使用
    ASP.NET AJAX入门系列(9):在母版页中使用UpdatePanel
    ASP.NET AJAX入门系列(8):自定义异常处理
    ASP.NET AJAX入门系列(7):使用客户端脚本对UpdateProgress编程
    ASP.NET AJAX入门系列(6):UpdateProgress控件简单介绍
    ASP.NET AJAX入门系列(5):使用UpdatePanel控件(二) UpdatePanel
    ASP.NET AJAX入门系列(4):使用UpdatePanel控件(一)
  • 原文地址:https://www.cnblogs.com/J-william/p/7521029.html
Copyright © 2011-2022 走看看