1.csv文件
(1)写入
import csv
with open('test.csv', 'w', newline='', encoding='utf-8') as wf:
# 用csv文件包装
writer = csv.writer(wf)
# 创建头文件
headers = ['Source', 'Target', 'Weight']
writer.writerow(headers)
# 写入数据
lists = ['a', 'b', 'c']
writer.writerow(lists)
writer.writerow(['a', 'b', 'c'])
writer.writerow(['a', 'b', 'c'])
writer.writerow(['a', 'b', 'c'])
# 一共写入4行数据
# newline='' 每一行的数据没有多余的空格
# encoding='utf-8' 文件编码格式是'utf-8'
(2)读取
import pandas as pd
filer = open('test.csv', encoding='utf-8')
df = pd.read_csv(filer)
filer.close()
# 按行遍历csv文件
for index in df.index:
Source = df.loc[index].values[0] # Source
Target = df.loc[index].values[1] # Target
Weight = df.loc[index].values[2] # Weight
print(Source, Target, Weight)
with open('XXX.csv', 'w') as wf :
等价于
open('XXX.csv', 'w')
close()
所以上面代码可以写成
import pandas as pd
with open('test.csv', 'r', encoding='utf-8') as rf:
df = pd.read_csv(rf)
# 按行遍历csv文件
for index in df.index:
Source = df.loc[index].values[0] # Source
Target = df.loc[index].values[1] # Target
Weight = df.loc[index].values[2] # Weight
print(Source, Target, Weight)
2.txt文件
读出
file = open('1.txt', 'r')
while True:
line = file.readline()
if line == '':
break
print(line)
写入
fw = open('t2.txt', 'w')
fw.write('hello boy!')
fw.write('hello boy!')
fw.write('hello boy!')
fw.write('hello boy!
')
fw.write('hello boy!')
3.pickle文件
读取数据速度快
写入
import pickle
result = [1.0, 2, 3, 4, 5]
with open('temp.pkl', 'wb') as file:
pickle.dump(result, file)
读出
import pickle
with open('temp.pkl', 'rb') as file:
result = pickle.load(file)
print(result)
但是值得注意的是这种数据结构很容易被损害,尤其是你把'rb'写成'wb'的时候,会导致文件彻底损坏,所以只使用之前先保存一下。