zoukankan      html  css  js  c++  java
  • [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)

    nocow上的题解很好。 http://www.nocow.cn/index.php/USACO/schlnet

     如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断。

    ----------------------------------------------------------------------------------

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #define rep(i,r) for(int i=0;i<r;i++)
    #define clr(x,c) memset(x,c,sizeof(x))
    #define Rep(i,l,r) for(int i=l;i<r;i++)
    using namespace std;
    const int maxn=100+5;
    int p[maxn];
    int map[maxn][maxn];
    int in[maxn],out[maxn];
    bool ok[maxn];
    int n;
    void init() {
    clr(map,0); clr(in,0); clr(out,0); clr(ok,0);
    cin>>n;
    rep(i,n) p[i]=i;
    int t;
    rep(i,n)
    while(scanf("%d",&t) && t) map[i][--t]=1;
    }
    int find(int x) { return x==p[x] ? x:p[x]=find(p[x]); }
    void work() {
    rep(k,n)
       rep(i,n)
           rep(j,n) if(map[i][k] && map[k][j]) map[i][j]=1;
           
    rep(i,n)
       Rep(j,i+1,n) if(map[i][j] && map[j][i]) p[i]=find(j);
    rep(i,n) {
    int x=find(i);
    ok[x]=1;
    rep(j,n) {
    int y=find(j);
    if(x==y) continue;
    if(map[i][j]) out[x]++;
    if(map[j][i]) in[x]++;
    }
    }
    int cnt[2]={0,0},pd=-1;
    rep(i,n) if(ok[i]) {
    pd++;
    if(!in[i]) cnt[0]++;
    if(!out[i]) cnt[1]++;
    }
    if(pd) printf("%d %d ",cnt[0],max(cnt[0],cnt[1]));
    else printf("1 0 ");
    }
    int main()
    {
    freopen("schlnet.in","r",stdin);
    freopen("schlnet.out","w",stdout);
    init();
    work();
    return 0;
    }

    ----------------------------------------------------------------------------------

    Network of Schools
    IOI '96 Day 1 Problem 3

    A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the "receiving schools"). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B.

    You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

    PROGRAM NAME: schlnet

    INPUT FORMAT

    The first line of the input file contains an integer N: the number of schools in the network (2<=N<=100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

    SAMPLE INPUT (file schlnet.in)

    5 2 4 3 0 4 5 0 0 0 1 0 

    OUTPUT FORMAT

    Your program should write two lines to the output file. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

    SAMPLE OUTPUT (file schlnet.out)

    1 2
  • 相关阅读:
    重学微积分
    重学微积分
    重学微积分
    python打包成exe过程中遇到的问题
    日常笔记-VS
    Python项目案例开发从入门到实战-1.5Python文件的使用
    Python项目案例开发从入门到实战-1.4Python图形界面设计
    Python项目案例开发从入门到实战-1.3 Python面向对象设计
    Python项目案例开发从入门到实战-1.2 Python语法基础
    剑指offer题目汇总
  • 原文地址:https://www.cnblogs.com/JSZX11556/p/4345619.html
Copyright © 2011-2022 走看看