zoukankan      html  css  js  c++  java
  • Codeforces 906 D Power Tower

    Discription

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power wk then value of power of a new tower will be {wk}p.

    Rocks are added from the last to the first. That is for sequence w1, ..., wm value of power will be

    After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.

    Input

    First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).

    Second line of input contains n integers wk (1 ≤ wk ≤ 109) which is the power of rocks that priests have.

    Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.

    kth of next q lines contains two integers lk and rk (1 ≤ lk ≤ rk ≤ n).

    Output

    Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks lk, lk + 1, ..., rk.

    Example

    Input
    6 1000000000
    1 2 2 3 3 3
    8
    1 1
    1 6
    2 2
    2 3
    2 4
    4 4
    4 5
    4 6
    Output
    1
    1
    2
    4
    256
    3
    27
    597484987

    Note

    327 = 7625597484987

    首先你得需要知道一个定理:

    当x>φ(p)时,a^x  mod p=a^(x mod φ(p)  +φ(p))  mod p。

    因为φ(x)迭代不超过log(x)次就成1了(考虑2这个质因子),所以我们直接暴力迭代就行了。

    由于我们并不知道下一层的值(也就是这一层的次数)是否大于φ(p),所以%p改成%2p就行了。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<map>
    #define ll long long
    #define maxn 100005
    using namespace std;
    ll a[maxn],n,mod[105],l,r,q,tot=0;
    
    inline ll MO(ll x,ll y){
        return x>y?x%y+y:x;
    }
    
    inline ll ksm(ll x,ll y,const ll ha){
        ll an=1;
        for(;y;y>>=1,x=MO(x*x,ha)) if(y&1) an=MO(an*x,ha);
        return an;
    }
    
    inline ll phi(ll x){
        int tp=sqrt(x+0.5),y=1;
        for(int i=2;i<=tp;i++) if(!(x%i)){
            x/=i,y*=i-1;
            while(!(x%i)) x/=i,y*=i;
            if(x==1) break;
        }
        if(x!=1) y*=x-1;
        return y;
    }
    
    ll solve(int now,ll mo){
        if(now==r||mo==1) return MO(a[now],mo);
        else return ksm(a[now],solve(now+1,mod[now-l+1]),mo);
    }
    
    int main(){
        scanf("%lld%lld",&n,mod);
        while(mod[tot]!=1) mod[tot+1]=phi(mod[tot]),tot++;
        
        for(int i=1;i<=n;i++) scanf("%lld",a+i);
        scanf("%lld",&q);
        while(q--){
            scanf("%lld%lld",&l,&r);
            ll ans=solve(l,mod[0]);
            if(ans>=mod[0]) ans-=mod[0];
            printf("%lld
    ",ans);
        }
        
        return 0;
    }
  • 相关阅读:
    hdu 4970 树状数组 “改段求段”
    hdu 2242 无向图/求用桥一分为二后使俩个bcc点权值和之差最小并输出 /缩点+2次新图dfs
    hdu3715 2-sat+二分
    hdu 3639 有向图缩点+建反向图+搜索
    hdu 3072 有向图缩点成最小树形图计算最小权
    hdu 3061 hdu 3996 最大权闭合图 最后一斩
    hdu 3879 hdu 3917 构造最大权闭合图 俩经典题
    hdu 4738 无向图缩点断桥 // 细节坑题
    hdu3452 无向树去掉最小的边集使任何叶子与根不连通 / 最小割
    hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8384375.html
Copyright © 2011-2022 走看看