题意如文章标题。。。
在有源汇可行流上从S到T再跑一遍最大流,可行流中T->S的流量+这次的最大流流量就是答案。
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define maxn 305
using namespace std;
const int inf=1<<30;
struct lines{
int to,flow,cap;
}l[100005];
vector<int> g[maxn];
int t=-1,n,m,S,T,SS,TT;
int inside[maxn],mx,tot=0;
int cur[maxn],d[maxn];
bool v[maxn],flag=0;
inline void add(int from,int to,int cap){
l[++t]=(lines){to,0,cap},g[from].pb(t);
l[++t]=(lines){from,0,0},g[to].pb(t);
}
inline bool BFS(int start){
memset(v,0,sizeof(v));
queue<int> q;
int x; lines e;
d[start]=0,v[start]=1,q.push(start);
while(!q.empty()){
x=q.front(),q.pop();
for(int i=g[x].size()-1;i>=0;i--){
e=l[g[x][i]];
if(flag&&g[x][i]>mx) continue;
if(e.flow<e.cap&&!v[e.to]){
v[e.to]=1,d[e.to]=d[x]+1;
q.push(e.to);
}
}
}
return flag?v[T]:v[TT];
}
int dfs(int x,int a){
if(!a||(flag&&x==T)||(!flag&&x==TT)) return a;
int flow=0,f,sz=g[x].size();
for(int &i=cur[x];i<sz;i++){
if(flag&&g[x][i]>mx) continue;
lines &e=l[g[x][i]];
if(d[e.to]==d[x]+1&&(f=dfs(e.to,min(a,e.cap-e.flow)))){
flow+=f,a-=f;
e.flow+=f,l[g[x][i]^1].flow-=f;
if(!a) break;
}
}
return flow;
}
inline bool can(){
int an=0;
while(BFS(SS)){
memset(cur,0,sizeof(cur));
an+=dfs(SS,inf);
}
return an==tot;
}
inline int calc(){
int an=0;
while(BFS(S)){
memset(cur,0,sizeof(cur));
an+=dfs(S,inf);
}
return an;
}
int main(){
scanf("%d%d%d%d",&n,&m,&S,&T);
int uu,vv,bt,cl;
SS=0,TT=n+1;
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&uu,&vv,&bt,&cl);
add(uu,vv,cl-bt);
inside[vv]+=bt;
inside[uu]-=bt;
}
mx=t;
for(int i=1;i<=n;i++){
if(inside[i]>0) add(SS,i,inside[i]),tot+=inside[i];
else add(i,TT,-inside[i]);
}
add(T,S,inf);
if(!can()){
puts("please go home to sleep");
return 0;
}
flag=1;
printf("%d
",l[t-1].flow+calc());
return 0;
}