zoukankan      html  css  js  c++  java
  • Codeforces 540 D Bad Luck Island

    Discription

    The Bad Luck Island is inhabited by three kinds of species: r rocks, s scissors andp papers. At some moments of time two random individuals meet (all pairs of individuals can meet equiprobably), and if they belong to different species, then one individual kills the other one: a rock kills scissors, scissors kill paper, and paper kills a rock. Your task is to determine for each species what is the probability that this species will be the only one to inhabit this island after a long enough period of time.

    Input

    The single line contains three integers rs and p (1 ≤ r, s, p ≤ 100) — the original number of individuals in the species of rock, scissors and paper, respectively.

    Output

    Print three space-separated real numbers: the probabilities, at which the rocks, the scissors and the paper will be the only surviving species, respectively. The answer will be considered correct if the relative or absolute error of each number doesn't exceed 10 - 9.

    Example

    Input
    2 2 2
    Output
    0.333333333333 0.333333333333 0.333333333333
    Input
    2 1 2
    Output
    0.150000000000 0.300000000000 0.550000000000
    Input
    1 1 3
    Output
    0.057142857143 0.657142857143 0.285714285714


    方程的转移比较显然23333,问题是怎么消除后效性。
    也就是,每次f[i][j][k] 有 (C(i,2) + C(j,2) + C(k,2))/C(i+j+k,2) 的概率走到自己,
    那么我们用一下生成函数(1+p+p^2+...=1/(1-p))的基本性质就可以算出f[i][j][k]期望走到自己多少次
    ,然后再转移即可。

    #include<bits/stdc++.h>
    #define ll long long
    #define D double
    using namespace std;
    D f[105][105][105];
    int n,m,k,C[355];
    
    inline void init(){
    	C[0]=C[1]=0;
    	for(int i=2;i<=320;i++) C[i]=C[i-1]+i-1;
    }
    
    inline void dp(){
    	f[n][m][k]=1.00;
    	for(int i=n;i>=0;i--)
    	    for(int j=m;j>=0;j--)
    	        for(int u=k;u>=0;u--) if((i>0)+(j>0)+(u>0)>=2){
    	        	f[i][j][u]=f[i][j][u]*C[i+j+u]/(double)(C[i+j+u]-C[i]-C[j]-C[u]);
    	        	if(i) f[i-1][j][u]+=f[i][j][u]*i*u/(double)C[i+j+u];
    	        	if(j) f[i][j-1][u]+=f[i][j][u]*i*j/(double)C[i+j+u];
    	        	if(u) f[i][j][u-1]+=f[i][j][u]*j*u/(double)C[i+j+u];
    			}
    }
    
    inline void output(){
    	D ans;
    	ans=0;
    	for(int i=1;i<=n;i++) ans+=f[i][0][0];
    	printf("%.11lf ",ans);
    	ans=0;
    	for(int i=1;i<=m;i++) ans+=f[0][i][0];
    	printf("%.11lf ",ans);
    	ans=0;
    	for(int i=1;i<=k;i++) ans+=f[0][0][i];
    	printf("%.11lf",ans);
    }
    
    int main(){
    	init();
    	scanf("%d%d%d",&n,&m,&k);
    	dp();
    	output();
    	return 0;
    }
    

      

     
  • 相关阅读:
    MySQL总结
    16 MySQL--正确使用索引
    15 MySQL--索引
    14 MySQL--事务&函数与流程控制
    13 MySQL--存储过程
    12 MySQL--内置功能介绍
    Spring课程 Spring入门篇 4-6 Spring bean装配之基于java的容器注解说明--@ImportResource和@Value java与properties文件交互
    Spring课程 Spring入门篇 4-5 Spring bean装配之基于java的容器注解说明--@Bean
    Spring课程 Spring入门篇 4-4 Spring bean装配(下)之Autowired注解说明3 多选一 qualifier
    Spring课程 Spring入门篇 4-3 Spring bean装配(下)之Autowired注解说明2 集合运用
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8597359.html
Copyright © 2011-2022 走看看