zoukankan      html  css  js  c++  java
  • CodeForces

    Discription

    You are given an undirected graph, constisting of n vertices and m edges. Each edge of the graph has some non-negative integer written on it.

    Let's call a triple (u, v, s) interesting, if 1 ≤ u < v ≤ n and there is a path (possibly non-simple, i.e. it can visit the same vertices and edges multiple times) between vertices u and v such that xor of all numbers written on the edges of this path is equal to s. When we compute the value s for some path, each edge is counted in xor as many times, as it appear on this path. It's not hard to prove that there are finite number of such triples.

    Calculate the sum over modulo 109 + 7 of the values of s over all interesting triples.


    Input

    The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 0 ≤ m ≤ 200 000) — numbers of vertices and edges in the given graph.

    The follow m lines contain three integers ui, vi and ti (1 ≤ ui, vi ≤ n, 0 ≤ ti ≤ 1018, ui ≠ vi) — vertices connected by the edge and integer written on it. It is guaranteed that graph doesn't contain self-loops and multiple edges.

    Output

    Print the single integer, equal to the described sum over modulo 109 + 7.

    Examples
    Input
    4 4
    1 2 1
    1 3 2
    2 3 3
    3 4 1
    Output
    12
    Input
    4 4
    1 2 1
    2 3 2
    3 4 4
    4 1 8
    Output
    90
    Input
    8 6
    1 2 2
    2 3 1
    2 4 4
    4 5 5
    4 6 3
    7 8 5
    Output
    62
    Note

    In the first example the are 6 interesting triples:

    1. (1, 2, 1)
    2. (1, 3, 2)
    3. (1, 4, 3)
    4. (2, 3, 3)
    5. (2, 4, 2)
    6. (3, 4, 1)
    The sum is equal to 1 + 2 + 3 + 3 + 2 + 1 = 12.

    In the second example the are 12 interesting triples:

    1. (1, 2, 1)
    2. (2, 3, 2)
    3. (1, 3, 3)
    4. (3, 4, 4)
    5. (2, 4, 6)
    6. (1, 4, 7)
    7. (1, 4, 8)
    8. (2, 4, 9)
    9. (3, 4, 11)
    10. (1, 3, 12)
    11. (2, 3, 13)
    12. (1, 2, 14)
    The sum is equal to 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 11 + 12 + 13 + 14 = 90.
     
     
        根据 Wc 2012 Xor 那道题,我们知道,两点之间所有路径xor和是可以通过随意找一条路径然后放到环的线性基里xjb异或而得到的,这个不难画图发现(模拟中途走去环然后返回的过程)。
     
        于是,本题就是对于每个联通分量,先随便搞出一颗dfs树,并把所有回边构成的环加到线性基里。
        然后发现任意两点之间在dfs树上路径的xor和就等于他们到根的xor和再xor起来,之后再考虑上线性基,推完一波式子之后直接做就行了。
     
    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=100005,ha=1e9+7;
    int hd[maxn],to[maxn*4],ne[maxn*4],num,cnt[69][2],tot,n,m,ans;
    ll val[maxn*4],ci[69],a[69],Xor[maxn];
    bool v[maxn],can[69];
    
    inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
    inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
    inline void addline(int x,int y,ll z){
        to[++num]=y,ne[num]=hd[x],hd[x]=num,val[num]=z;
    }
    
    inline int C(int x){ return (x*(ll)(x-1)>>1)%ha;}
    
    inline void update(ll x){
    	for(int i=0;i<=60;i++) if(x&ci[i]) can[i]=1;
    }
    
    inline void ins(ll x){
    	for(int i=60;i>=0;i--) if(x&ci[i]){
    		if(!a[i]){ a[i]=x,tot++,update(x); return;}
    		x^=a[i];
    	}
    }
    
    void dfs(int x,int fa){
    	v[x]=1;
    	for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
    		if(!v[to[i]]) Xor[to[i]]=Xor[x]^val[i],dfs(to[i],x);
    		else ins(Xor[x]^Xor[to[i]]^val[i]);
    	}
    	
    	for(int i=0;i<=60;i++) cnt[i][(Xor[x]&ci[i])?1:0]++;
    }
    
    inline void solve(){
    	for(int o=1;o<=n;o++) if(!v[o]){
            memset(cnt,0,sizeof(cnt));
            memset(a,0,sizeof(a)),tot=0;
            memset(can,0,sizeof(can));
    		dfs(o,0);
            
            /*
    		for(int i=0;i<=60;i++)
    	        for(int j=1;j<=n;j++) cnt[i][(Xor[j]&ci[i])?1:0]++;
    	    */
    	    
        	for(int i=0,now;i<=60;i++){
                now=0;
                
                if(can[i]){
                	ADD(now,cnt[i][0]%ha*(ll)cnt[i][1]%ha);
                	ADD(now,add(C(cnt[i][0]),C(cnt[i][1]))%ha);
                	now=now*(ll)(ci[tot-1]%ha)%ha;
        		}
        		else ADD(now,ci[tot]%ha*(ll)cnt[i][0]%ha*(ll)cnt[i][1]%ha);
        		
        		ADD(ans,now*(ll)(ci[i]%ha)%ha);
        	}
        }
    }
    
    int main(){
    	ci[0]=1;
    	for(int i=1;i<=60;i++) ci[i]=ci[i-1]+ci[i-1];
    	
    	scanf("%d%d",&n,&m);
    	int uu,vv; ll ww;
    	for(int i=1;i<=m;i++){
    	    scanf("%d%d%I64d",&uu,&vv,&ww);
    		addline(uu,vv,ww),addline(vv,uu,ww);
        }
        
    	solve();
    	
    	printf("%d
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    jQuery Easing 动画效果扩展--使用Easing插件,让你的动画更具美感。
    JavaScript表达式--掌握最全的表达式,一切尽在掌握中,让表达不再是难事
    JavaScript的格式--从格式做起,做最严谨的工程师
    JavaScript 简介--对javascript的初识,最基础的了解
    手机web页面制作时的注意事项
    实现像淘宝一样牛的语音搜索框
    Cufon在渲染网页字体你不知道的事
    .net中单选按钮RadioButton,RadioButtonList 以及纯Html中radio的用法实例?
    使用C#把发表的时间改为几个月,几天前,几小时前,几分钟前,或几秒前
    eval解析JSON中的注意点
  • 原文地址:https://www.cnblogs.com/JYYHH/p/9103819.html
Copyright © 2011-2022 走看看