zoukankan      html  css  js  c++  java
  • CodeForces

        不难想到,x有边连出的一定是 (2^n-1) ^ x 的一个子集,直接连子集复杂度是爆炸的。。。但是我们可以一个1一个1的消去,最后变成补集的一个子集。

        但是必须当且仅当 至少有一个 a 等于 x 的时候, 可以直接dfs(all ^ x) ,否则直接消1连边。。。

    Discription

    You are given a set of size mm with integer elements between 00 and 2n12n−1 inclusive. Let's build an undirected graph on these integers in the following way: connect two integers xx and yy with an edge if and only if x&y=0x&y=0. Here && is the bitwise AND operation. Count the number of connected components in that graph.

    Input

    In the first line of input there are two integers nn and mm (0n220≤n≤22, 1m2n1≤m≤2n).

    In the second line there are mm integers a1,a2,,ama1,a2,…,am (0ai<2n0≤ai<2n) — the elements of the set. All aiai are distinct.

    Output

    Print the number of connected components.

    Examples

    Input
    2 3
    1 2 3
    Output
    2
    Input
    5 5
    5 19 10 20 12
    Output
    2

    Note

    Graph from first sample:

    Graph from second sample:

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=5000005;
    int ci[233],T,n,a[maxn],ans,all;
    bool v[maxn],isp[maxn];
    
    inline int read(){
    	int x=0; char ch=getchar();
    	for(;!isdigit(ch);ch=getchar());
    	for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
    	return x;
    }
    
    void dfs(int x){
    	if(v[x]) return;
    	v[x]=1;
    	
    	if(isp[x]) dfs(all^x);
    	
    	for(int i=0;i<=T;i++) if(ci[i]&x) dfs(x^ci[i]);
    }
    
    inline void solve(){
    	for(int i=1;i<=n;i++) if(!v[a[i]]){
    		ans++,v[a[i]]=1,dfs(all^a[i]);
    	}
    }
    
    int main(){
    	ci[0]=1;
    	for(int i=1;i<=22;i++) ci[i]=ci[i-1]<<1;
    	
    	T=read(),n=read(),all=ci[T]-1;
    	for(int i=1;i<=n;i++) a[i]=read(),isp[a[i]]=1;
    	
    	solve();
    	
    	printf("%d
    ",ans);
    	return 0;
    }
    

      

  • 相关阅读:
    剑指offer 合并两个排序的链表
    剑指offer 把字符串转换成整数
    剑指offer 数组中重复的数字
    剑指offer 数字在排序数组中出现的次数
    剑指offer 替换空格
    go学习笔记-错误处理
    go学习笔记-类型转换(Type Conversion)
    go学习笔记-语言指针
    go学习笔记-包处理
    go学习笔记-面向对象(Methods, Interfaces)
  • 原文地址:https://www.cnblogs.com/JYYHH/p/9112798.html
Copyright © 2011-2022 走看看