题目传送门
sol:因为查询的点一共最多只有$100000$个。若当本次查询的点比较少,小于$\sqrt{100000}$,那我们可以枚举起始点$u$和终点$v$,若$u, v$之间有边,则用并查集将$u, v$节点合并,最后统计有多少个联通块;若当本次查询的点比较多,大于$\sqrt{100000}$,那我们可以枚举所有边,若$u, v$都在本次查询的点集内,则用并查集将$u, v$节点合并,最后统计有多少个联通块。
- 二分+并查集
#include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 100010; inline int read() { int n = 0, f = 1; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = -f; c = getchar(); } while (c >= '0' && c <= '9') { n = 10 * n + (c ^ '0'); c = getchar(); } return f * n; } vector<int> edge[MAXN]; int node[MAXN], dsu[MAXN]; int find(int i) { if (dsu[i] == -1) return i; return dsu[i] = find(dsu[i]); } bool search_1(int u, int v) { int l = -1, r = edge[u].size(); while (l < r - 1) { int m = l + r >> 1; if (edge[u][m] == v) return true; if (edge[u][m] < v) l = m; if (edge[u][m] > v) r = m; } return false; } bool search_2(int l, int r, int k) { if (node[l] == k || node[r] == k) return true; while (l < r - 1) { int m = l + r >> 1; if (node[m] == k) return true; if (node[m] < k) l = m; if (node[m] > k) r = m; } return false; } void slove_1(int n, int k) { for (int i = 1; i <= k; i++) { for (int j = 1; j < i; j++) { if (search_1(node[i], node[j])) { int fu = find(node[i]); int fv = find(node[j]); if (fu != fv) dsu[fu] = fv; } } } int ans = 0; for (int i = 1; i <= k; i++) { if (dsu[node[i]] == -1) ans ++; else dsu[node[i]] = -1; } printf("%d\n", ans); } int slove_2(int n, int k) { for (int u = 1; u <= n; u++) { for (int v : edge[u]) { if (search_2(1, k, u) && search_2(1, k, v)) { int fu = find(u); int fv = find(v); if (fu != fv) dsu[fu] = fv; } } } int ans = 0; for (int i = 1; i <= k; i++) { if (dsu[node[i]] == -1) ans ++; else dsu[node[i]] = -1; } printf("%d\n", ans); } int main() { int n = read(), m = read(), q = read(); for (int i = 1; i <= m; i++) { int u = read(), v = read(); edge[u].push_back(v); edge[v].push_back(u); } for (int i = 1; i <= n; i++) { sort(edge[i].begin(), edge[i].end()); } memset(dsu, -1, sizeof(dsu)); while (q--) { int k = read(); for (int i = 1; i <= k; i++) node[i] = read(); sort(node + 1, node + 1 + k); if (k <= 320) slove_1(n, k); else slove_2(n, k); } return 0; }
------------------------------------------------------------分隔线------------------------------------------------------------
总结:这道题的解法真妙,一道题里用到了两种不同策略。$solve1$的复杂度是$O(k^2\log_2k)$,当k比较小时非常快,$slove2$的复杂度是$O(m\log_2k)$,随着$k$的增加变化不大。所以$k$小用$slove1$,$k$大用$slove2$。