zoukankan      html  css  js  c++  java
  • Python Pandas -- Series

    pandas.Series

    class pandas.Series(data=Noneindex=Nonedtype=Nonename=Nonecopy=Falsefastpath=False)

    One-dimensional ndarray with axis labels (including time series).

    Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN)

    Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.

    Parameters :

    data : array-like, dict, or scalar value

    Contains data stored in Series

    index : array-like or Index (1d)

    Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.

    dtype : numpy.dtype or None

    If None, dtype will be inferred

    copy : boolean, default False

    Copy input data

    Series 类似数组,但是它有标签(label) 或者索引(index).

    1. 从最简单的series开始看。

    from pandas import Series, DataFrame
    import pandas as pd  
    ser1 = Series([1,2,3,4])
    print(ser1)
    #0    1
    #1    2
    #2    3
    #3    4
    #dtype: int64

    此时因为没有设置index,所以用默认

    2. 加上索引

    ser2 = Series(range(4),index=['a','b','c','d'])
    print(ser2)
    #a    0
    #b    1
    #c    2
    #d    3
    #dtype: int64

    3. dictionnary 作为输入

    dict1 = {'ohio':35000,'Texas':71000,'Oregon':1600,'Utah':500}
    ser3 = Series(dict1)
    #Oregon     1600
    #Texas     71000
    #Utah        500
    #ohio      35000
    #dtype: int64

    key:默认设置为index

    dict1 = {'ohio':35000,'Texas':71000,'Oregon':1600,'Utah':500}
    ser3 = Series(dict1)
    #Oregon     1600
    #Texas     71000
    #Utah        500
    #ohio      35000
    #dtype: int64
    print(ser3)
    states = ['California', 'Ohio', 'Oregon', 'Texas']
    ser4 = Series(dict1,index = states)
    print(ser4)
    #California        NaN
    #Ohio              NaN
    #Oregon         1600.0
    #Texas         71000.0
    #dtype: float64

    用了dictionary时候,也是可以特定的制定index的,当没有map到value的时候,给NaN.

    print(pd.isnull(ser4))
    #California     True
    #Ohio           True
    #Oregon        False
    #Texas         False
    #dtype: bool

    函数isnull判断是否为null

    print(pd.isnull(ser4))
    #California     True
    #Ohio           True
    #Oregon        False
    #Texas         False
    #dtype: bool

    函数notnull判断是否为非null

    print(pd.notnull(ser4))
    #California    False
    #Ohio          False
    #Oregon         True
    #Texas          True
    #dtype: bool

    4. 访问元素和索引用法

    print (ser2['a']) #0
    #print (ser2['a','c']) error
    print (ser2[['a','c']]) 
    #a    0
    #c    2
    #dtype: int64
    print(ser2.values) #[0 1 2 3]
    print(ser2.index) #Index(['a', 'b', 'c', 'd'], dtype='object')

    5. 运算, pandas的series保留Numpy的数组操作

    print(ser2[ser2>2])
    #d    3
    #dtype: int64
    print(ser2*2)
    #a    0
    #b    2
    #c    4
    #d    6
    #dtype: int64
    print(np.exp(ser2))
    #a     1.000000
    #b     2.718282
    #c     7.389056
    #d    20.085537
    #dtype: float64

    6. series 的自动匹配,这个有点类似sql中的full join,会基于索引键链接,没有的设置为null

    print (ser3+ser4)
    #California         NaN
    #Ohio               NaN
    #Oregon          3200.0
    #Texas         142000.0
    #Utah               NaN
    #ohio               NaN
    #dtype: float64

    7. series对象和索引都有一个name属性

    ser4.index.name = 'state'
    ser4.name = 'population count'
    print(ser4)
    #state
    #California        NaN
    #Ohio              NaN
    #Oregon         1600.0
    #Texas         71000.0
    #Name: population count, dtype: float64

     8.预览数据

    print(ser4.head(2))
    print(ser4.tail(2))
    #state
    #California   NaN
    #Ohio         NaN
    #Name: population count, dtype: float64
    #state
    #Oregon     1600.0
    #Texas     71000.0
    #Name: population count, dtype: float64
  • 相关阅读:
    项目中常用的图片处理方案小结
    Unity2D实现人物三连击
    使用mescroll实现上拉加载与下拉刷新
    iOS中文输入法多次触发的问题及解决方案
    使用WebStorm将项目部署到IIS
    在Less中使用条件判断
    Vue+原生App混合开发手记#1
    在Vue中使用layer.js弹出层插件
    局域网简单的SVN服务器的搭建
    在iOS中实现sticky header
  • 原文地址:https://www.cnblogs.com/Jesse-Li/p/8807588.html
Copyright © 2011-2022 走看看