zoukankan      html  css  js  c++  java
  • Saint John Festival Gym

    Problem J: Saint John Festival

    [Time Limit: 1 s quad Memory Limit: 256 MiB ]

    题意

    给出(n)个大点,和(m)个小点,然后问有多少个小点可以在任意一个(3)个大点组成的三角形内。

    思路

    很明显只要对大点求凸包,然后判断有多少个在凸包里的小点就可以了,但是判断点在凸包内如果用(O(N))的方法会(TLE),需要进行二分。
    我求出的是逆时针的凸包,然后定下一个端点(p[1]),寻找另外两个端点(p[id])(p[id+1]),根据查询的点在(p[1]-p[id])这条直线右侧或者在(p[1]-p[id+1])这个点左侧来二分范围,如果在(p[1]-p[id])(p[1]-p[id+1])之间,那么在判断是否在(p[id]-p[id+1])左侧来判断是否在凸包内。

    /***************************************************************
        > File Name    : J.cpp
        > Author       : Jiaaaaaaaqi
        > Created Time : 2019年05月06日 星期一 18时14分21秒
     ***************************************************************/
    
    #include <map>
    #include <set>
    #include <list>
    #include <ctime>
    #include <cmath>
    #include <stack>
    #include <queue>
    #include <cfloat>
    #include <string>
    #include <vector>
    #include <cstdio>
    #include <bitset>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define  lowbit(x)  x & (-x)
    #define  mes(a, b)  memset(a, b, sizeof a)
    #define  fi         first
    #define  se         second
    #define  pii        pair<int, int>
    #define  INOPEN     freopen("in.txt", "r", stdin)
    #define  OUTOPEN    freopen("out.txt", "w", stdout)
    
    typedef unsigned long long int ull;
    typedef long long int ll;
    const int    maxn = 5e4 + 10;
    const int    maxm = 1e5 + 10;
    const ll     mod  = 1e9 + 7;
    const ll     INF  = 1e18 + 100;
    const int    inf  = 0x3f3f3f3f;
    const double pi   = acos(-1.0);
    const double eps  = 1e-8;
    using namespace std;
    
    int n, m;
    int cas, tol, T;
    int sgn(double x) {
    	if(fabs(x) <= eps)	return 0;
    	else	return x>0 ? 1 : -1;
    }
    struct Point {
    	double x, y;
    	Point() {}
    	inline Point(double _x, double _y) {
    		x = _x, y = _y;
    	}
    	inline Point operator - (Point a) const {
    		return Point(x-a.x, y-a.y);
    	}
    	inline double operator ^ (Point a) const {
    		return x*a.y - y*a.x;
    	}
    	inline double distance(Point p) const {
    		return hypot(x-p.x, y-p.y);
    	}
    	inline bool operator < (Point a) const {
    		return sgn(y-a.y)==0 ? sgn(x-a.x)<0 : y<a.y;
    	}
    	inline bool operator == (Point a) const {
    		return sgn(x-a.x)==0 && sgn(y-a.y)==0;
    	}
    	inline double operator * (Point a) const {
    		return x*a.x + y*a.y;
    	}
    };
    struct Line {
    	Point s, e;
    	Line() {}
    	Line(Point _s, Point _e) {
    		s = _s, e = _e;
    	}
    	inline bool pointseg(Point p) {
    		return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <=0;
    	}
    };
    struct Polygon {
    	int n;
    	Point p[maxn];
    	Line l[maxn];
    	inline void add(Point q) {
    		p[++n] = q;
    	}
    	struct cmp {
    		Point p;
    		cmp(Point _p) {
    			p = _p;
    		}
    		bool operator() (Point _a, Point _b) const {
    			Point a = _a, b = _b;
    			int d = sgn((a-p)^(b-p));
    			if(d == 0) {
    				return sgn(a.distance(p) - b.distance(p)) < 0;
    			} else {
    				return d>0;
    			}
    		}
    	};
    	void norm() {
    		int id = 1;
    		for(int i=2; i<=n; ++i) {
    			if(p[i] < p[id])
    				id = i;
    		}
    		swap(p[id], p[1]);
    		sort(p+1, p+1+n, cmp(p[1]));
    	}
    	void Graham(Polygon &convex) {
    		norm();
    		mes(convex.p, 0);
    		int &top = convex.n = 0;
    		if(n == 1) {
    			convex.p[++top] = p[1];
    		} else if(n == 2) {
    			convex.p[++top] = p[1];
    			convex.p[++top] = p[2];
    			if(convex.p[1] == convex.p[2])	top--;
    		} else {
    			convex.p[++top] = p[1];
    			convex.p[++top] = p[2];
    			for(int i=3; i<=n; ++i) {
    				while(top>1 && sgn((convex.p[top]-convex.p[top-1])^
    					(p[i]-convex.p[top-1])) <= 0)
    						top--;
    				convex.p[++top] = p[i];
    			}
    			if(top == 2 && convex.p[1] == convex.p[2])
    				top--;
    		}
    	}
    	void getline() {
    		for(int i=1; i<=n; ++i) {
    			l[i] = Line(p[i], p[i%n+1]);
    		}
    	}
    	int inconvex(Point s) {
    		/*
    		点和凸包的关系
    		2	边上
    		1	内部
    		0	外部
    		*/
    		Point p1 = p[1];
    		Line l1 = Line(p[1], p[2]);
    		Line l2 = Line(p[1], p[n]);
    		if(l1.pointseg(s) || l2.pointseg(s))
    			return 2;
    		int l = 2, r = n-1;
    		while(l<=r) {
    			int mid = l+r>>1;
    			int t1 = sgn((s-p1)^(p[mid]-p1));
    			int t2 = sgn((s-p1)^(p[mid+1]-p1));
    			if(t1 <= 0 && t2 >= 0) {
    				int t3 = sgn((s-p[mid]) ^ (p[mid+1]-p[mid]));
    				if(t3 < 0)	return 1;
    				else if(t3 == 0)	return 2;
    				return 0;
    			}
    			if(t1 > 0)	r = mid-1;
    			else	l = mid+1;
    		}
    		return 0;
    	}
    } large, small, con;
    inline int read() {
    	int x = 0, f = 1;
    	char s = getchar();
    	while (s < '0' || s > '9') {
    		if (s == '-')f = -1;
    		s = getchar();
    	}
    	while (s >= '0' && s <= '9') {
    		x = x * 10 + s - '0';
    		s = getchar();
    	}
    	return x * f;
    }
    int main() {
    	n = read();
    	large.n = small.n = con.n = 0;
    	int x, y;
    	for(int i=1; i<=n; ++i) {
    		x = read(), y =read();
    		large.add(Point(1.0*x, 1.0*y));
    	}
    	m = read();
    	for(int i=1; i<=m; ++i) {
    		x = read(), y =read();
    		small.add(Point(1.0*x, 1.0*y));
    	}
    	large.norm();
    	large.Graham(con);
    	int ans = 0;
    	for(int i=1; i<=m; ++i) {
    		if(con.inconvex(small.p[i])) {
    			ans++;
    		}
    	}
    	printf("%d
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    MST(prim)+树形dp-hdu-4756-Install Air Conditioning
    Java常用排序算法+程序员必须掌握的8大排序算法
    高可用可伸缩架构实用经验谈
    MYSQL索引失效的各种情形总结
    MySQL使用索引的场景及真正利用索引的SQL类型
    MySQL数据库索引的4大类型以及相关的索引创建
    JVM调优浅谈
    dubbo作为消费者注册过程分析--????
    webservice 协议
    你应该知道的 RPC 原理
  • 原文地址:https://www.cnblogs.com/Jiaaaaaaaqi/p/10821232.html
Copyright © 2011-2022 走看看