zoukankan      html  css  js  c++  java
  • TensorFlow 官方文档 Programmer's Guide 中文翻译 —— 引言

    TensorFlow Programmer's Guide (Introduction)

    TensorFlow 编程手册 (引言)

    #(本项目对tensorflow官网上给出的指导手册(TF1.3版本)进行了翻译,后续将持续更新,并补充个人对此的理解)

    The documents in this unit dive into the details of writing TensorFlow code. For TensorFlow 1.3, we revised this document extensively. The units are now as follows:

    本文档深入介绍编写TF代码的细节。对于TF1.3,我们对文档进行了大幅修改。目前的文档单元构成如下:

    Estimators, which introduces a high-level TensorFlow API that greatly simplifies ML programming.

    tf.estimators,引入了一个高层TF接口,极大地简化了机器学习编程。

    Tensors, which explains how to create, manipulate, and access Tensors--the fundamental object in TensorFlow.

    tf.tensors, 解释了如何创建、操作、访问张量。张量也即TF最基本的对象。

    Variables, which details how to represent shared, persistent state in your program.

    tf.variables,解释了如何表示程序中的共享的持续状态。

    Graphs and Sessions, which explains:

    图与会话,解释了:

    1. dataflow graphs, which are TensorFlow's representation of computations as dependencies between operations.

    1. 数据流图,是TF对各种计算操作(也即各操作间的依赖关系)的表示。

    2. sessions, which are TensorFlow's mechanism for running dataflow graphs across one or more local or remote devices. If you are programming with the low-level TensorFlow API, this unit is essential. If you are programming with a high-level TensorFlow API such as Estimators or Keras, the high-level API creates and manages graphs and sessions for you, but understanding graphs and sessions can still be helpful.

    2. 会话,TF在一个或多个本地或远程机器上运行数据流图的机制。如果你在底层TF接口上进行编程,那么这个单元对你来说是基本的。如果你利用高层TF接口如Estimators或Keras进行编程,那么这些接口会为你创建和管理图与会话,但是理解这些仍然会对你很有帮助。

    Saving and Restoring, which explains how to save and restore variables and models.

    保存和载入,解释了如何保存与载入变量和模型。

    Input Pipelines, which explains how to set up data pipelines to read data sets into your TensorFlow program.

    输入管道(导入数据),解释了如何构建数据管道来为你的TF程序读入你的数据集。

    Embeddings, which introduces the concept of embeddings, provides a simple example of training an embedding in TensorFlow, and explains how to view embeddings with the TensorBoard Embedding Projector.

    映射,介绍了TF中映射的概念,提供了一个在TF中训练映射的简单例子,解释了如何利用Tensorboard工具可视化映射关系。

    Debugging TensorFlow Programs, which explains how to use the TensorFlow debugger (tfdbg).

    调试TF程序,解释了如何使用TF的调试器(tfdbg)

    TensorFlow Version Compatibility, which explains backward compatibility guarantees and non-guarantees.

    TF版本兼容性,解释了版本回退对兼容性的保障及无保障之处。

    FAQ, which contains frequently asked questions about TensorFlow. (We have not revised this document for v1.3, except to remove some obsolete information.)

    常见问题解答,包含了关于TF最常见的问题,我们尚未针对1.3版本对此进行修改,仅移除了一些孤立的信息。

    Reference:

    [1] TensorFlow Programmer's Guide. (https://www.tensorflow.org/programmers_guide/)

  • 相关阅读:
    webstock学习
    H5存储
    js保留两位小数
    html5拖动滑块
    js判断网页访问设备类型
    关于hadoop setCombinerClass 与 setReducerClass同时使用存在的问题。
    hadoop 输出中文乱码问题
    mapreduce实现学生平均成绩
    mapreduce 实现数子排序
    hadoop mapreduce实现数据去重
  • 原文地址:https://www.cnblogs.com/Jie-Liang/p/8066272.html
Copyright © 2011-2022 走看看