摘自:https://www.cnblogs.com/54chensongxia/p/12360824.html
同步锁——ReentrantLock
本博客系列是学习并发编程过程中的记录总结。由于文章比较多,写的时间也比较散,所以我整理了个目录贴(传送门),方便查阅。
Lock接口简介#
在JUC包下面有一个java.util.concurrent.locks
包,这个包提供了一系列基础的锁工具,对传统的synchronizd、wait和notify等同步机制进行补充和增强。下面先来介绍下这个Lock接口。
Lock
接口可以视为synchronized
的增强版,提供了更灵活的功能。相对于synchronized
,Lock
接口还提供了限时锁等待、锁中断和锁尝试等功能。该接口的定义如下
public interface Lock {
// 尝试去获得锁
// 如果锁不可用,当前线程会变得不可用,直到获得锁为止。(中途会忽略中断)
void lock();
// 尝试去获取锁,如果锁获取不到,线程将不可用
// 知道获取锁,或者被其他线程中断
// 线程在获取锁操作中,被其他线程中断,则会抛出InterruptedException异常,并且将中断标识清除。
void lockInterruptibly() throws InterruptedException;
// 锁空闲时返回true,锁不空闲是返回false
boolean tryLock();
// 在unit时间内成功获取锁,返回true
// 在unit时间内未成功获取锁,返回false
// 如果当前线程在获取锁操作中,被其他线程中断,则会抛出InterruptedException异常,并且将中断标识清除。
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
// 释放锁
void unlock();
// 获取一个绑定到当前Lock对象的Condition对象
// 获取Condition对象的前提是当前线程持有Lock对象
Condition newCondition();
}
关于上面的lock()和lockInterruptibly()方法,有如下区别:
lock()方法类似于使用synchronized关键字加锁,如果锁不可用,出于线程调度目的,将禁用当前线程,并且在获得锁之前,该线程将一直处于休眠状态。
lockInterruptibly()方法顾名思义,就是如果锁不可用,那么当前正在等待的线程是可以被中断的,这比synchronized关键字更加灵活。
Lock接口的经典用法
Lock lock = new ReentrantLock();
if (lock.tryLock()) {
try {
// manipulate protected state
} finally {
lock.unlock();
}
} else {
// perform alternative actions
}
ReentrantLock#
ReentrantLock
类是一个可重入的独占锁,除了具有和synchronized一样的功能外,还具有限时锁等待、锁中断和锁尝试等功能。
ReentrantLock
底层是通过继承AQS来实现独占锁功能的。
公平锁和非公平锁#
关于ReentrantLock
,有两个很重要的概念需要学习:公平锁和非公平锁。
查看ReentrantLock
的源代码,我们会看到两个构造函数,分为对应构造公平锁和非公平锁。
//默认构造非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
//true构造公平锁,false构造非公平锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
公平锁:是指线程在抢占锁失败后会进入一个等待队列,先进入队列的线程会先获得锁。公平性体现在先来先得。
非公平锁:是指线程抢占锁失败后会进入一个等待队列,但是这些等待线程谁能先获得锁不是按照先来先得的规则,而是随机的。不公平性体现在后来的线程可能先得到锁。
如果有很多线程竞争一把公平锁,系统的总体吞吐量(即速度很慢,常常极其慢)比较低,因为此时在线程调度上面的开销比较大。
原因是采用公平策略时,当一个线程释放锁时,需要先将等待队列中的线程唤醒。这个唤醒的调度过程是比较耗费时间的。如果使用非公平锁的话,当一个线程释放锁之后,可用的线程能立马获得锁,效率较高。
ReentrantLock代码实现#
1. 非公平锁代码
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
//如果没有线程占据锁,则占据锁,也就是将state从0设置为1
//这种抢占方式不要排队,有人释放了锁,你可以直接插到第一位
//去抢,只要你能抢到
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
//否则尝试抢占锁
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
通过之前对AQS的介绍,我们知道抢占锁的时候会调用 tryAcquire 方法。非公平锁的这个方法直接调用了父类中的nonfairTryAcquire
。
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
//锁已经被释放,则直接占据锁
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//否则判断锁是不是之前被自己占用过,并设置重入次数
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
1. 公平锁代码
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//没人在队列中排队,并且锁已经被释放才能抢占到锁,否则去队列中排队
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//设置重入次数
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
作者: 写代码的木公
出处:https://www.cnblogs.com/54chensongxia/p/12360824.html
版权:本站使用「CC BY 4.0」创作共享协议,转载请在文章明显位置注明作者及出处。