import torch
import torch.multiprocessing as multiprocessing
from . import SequentialSampler, RandomSampler, BatchSampler
from . import _utils
import threading
from torch._six import queue
default_collate = _utils.collate.default_collate
class DataLoader(object):
__initialized = False
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=default_collate,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None):
self.dataset = dataset
self.batch_size = batch_size
self.num_workers = num_workers
self.collate_fn = collate_fn
self.pin_memory = pin_memory
self.drop_last = drop_last
self.timeout = timeout
self.worker_init_fn = worker_init_fn
if timeout < 0:
raise ValueError('timeout option should be non-negative')
if batch_sampler is not None: # 有batch_sampler之后,其他的什么东西都不能要了
if batch_size > 1 or shuffle or sampler is not None or drop_last:
raise ValueError('batch_sampler option is mutually exclusive '
'with batch_size, shuffle, sampler, and drop_last')
self.batch_size = None
self.drop_last = None
if sampler is not None and shuffle: # sampler 和shuffle不能兼容
raise ValueError('sampler option is mutually exclusive with '
'shuffle')
if self.num_workers < 0:
raise ValueError('num_workers option cannot be negative; '
'use num_workers=0 to disable multiprocessing.')
if batch_sampler is None:
if sampler is None:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
self.sampler = sampler
self.batch_sampler = batch_sampler
self.__initialized = True
def __setattr__(self, attr, val):
if self.__initialized and attr in ('batch_size', 'sampler', 'drop_last'):
raise ValueError('{} attribute should not be set after {} is '
'initialized'.format(attr, self.__class__.__name__))
super(DataLoader, self).__setattr__(attr, val)
def __iter__(self):
return _DataLoaderIter(self)
def __len__(self):
return len(self.batch_sampler)
使用方法大致如下:
for i, (input, target) in enumerate(train_data):
主要是_DataloaderIter这个类比较重要。
简单的来讲,有以下几点比较重要,或者说,比较不太容易懂。
- _ _ iter _ _() 和 _ _ next _ ()表示一个类是迭代器。 _ _ iter _ _()返回一个特殊的迭代器对象。
- Queue在使用的时候,当queue为空,queue.get()会阻塞,阻塞态的时候,如果其他进程/线程有get操作,本线程会被通知,然后get成功。当数据满了,queue.put会阻塞。
- 没有多线程的时候,batch = self.collate_fn([self.dataset[i] for i in indices]),使用index转化为data,数据。也就是(image,label)。
- 多线程的时候,为每一个线程创建index_queues。共享一个worker_result_queue数据队列。在_worker_loop中加载数据。
class _DataLoaderIter(object):
"""Iterates once over the DataLoader's dataset, as specified by the sampler"""
# NOTE [ Data Loader Multiprocessing Shutdown Logic ]
# Our data model looks like this (queues are indicated with curly brackets):
#
# main process ||
# | ||
# {index_queue} ||
# | ||
# worker processes || DATA
# | ||
# {worker_result_queue} || FLOW
# | ||
# pin_memory_thread of main process || DIRECTION
# | ||
# {data_queue} ||
# | ||
# data output /
#
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.sample_iter = iter(self.batch_sampler)
base_seed = torch.LongTensor(1).random_().item()
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.Queue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.done_event = multiprocessing.Event()
self.index_queues = []
self.workers = []
for i in range(self.num_workers): # 启动num_workers那么多个进程
index_queue = multiprocessing.Queue()
index_queue.cancel_join_thread()
w = multiprocessing.Process(
target=_utils.worker._worker_loop,# 目的是启动_worker_loop这个函数
args=(self.dataset, index_queue,
self.worker_result_queue, self.done_event,
self.collate_fn, base_seed + i,
self.worker_init_fn, i))# 把idx和samples放进了全局的worker_result_queue里面,这里的idx指的不是batch的indexes。就是用了多个线程,往worker_result_queue中填满了数据而已。
w.daemon = True
# NB: Process.start()
w.start()
self.index_queues.append(index_queue)
self.workers.append(w)
if self.pin_memory: # 貌似pin_memory的作用就是赋值一下tensor去GPU
self.data_queue = queue.Queue()
pin_memory_thread = threading.Thread(
target=_utils.pin_memory._pin_memory_loop,
args=(self.worker_result_queue, self.data_queue,
torch.cuda.current_device(), self.done_event))
pin_memory_thread.daemon = True
pin_memory_thread.start()
# Similar to workers (see comment above), we only register pin_memory_thread once it is started.
self.pin_memory_thread = pin_memory_thread
else:
self.data_queue = self.worker_result_queue
# 这里不是很懂,设置pids
_utils.signal_handling._set_worker_pids(id(self), tuple(w.pid for w in self.workers))
_utils.signal_handling._set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers): # 为什么*2,表示不是很懂,这里相当于加载了2*num_workers个batch的数据。大概是说,初始化的时候,给定足量的数据在里面。
self._put_indices()
def __len__(self):
return len(self.batch_sampler)
def _get_batch(self): # 从data_queue中取得数据
if self.timeout > 0:
try:
return self.data_queue.get(timeout=self.timeout) # 从data_queue中get数据
except queue.Empty:
raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
elif self.pin_memory:
while self.pin_memory_thread.is_alive(): #先判断一下pin_memory的线程是否还活着
try:
return self.data_queue.get(timeout=_utils.MP_STATUS_CHECK_INTERVAL)
except queue.Empty:
continue
else:
# while condition is false, i.e., pin_memory_thread died.
raise RuntimeError('Pin memory thread exited unexpectedly')
else:
return self.data_queue.get()
def __next__(self):
if self.num_workers == 0: # same-process loading
indices = next(self.sample_iter) # may raise StopIteration
batch = self.collate_fn([self.dataset[i] for i in indices])
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch
# check if the next sample has already been generated
# 这里,出现了的rcvd_idx可以用一个dict存起来。
if self.rcvd_idx in self.reorder_dict:
batch = self.reorder_dict.pop(self.rcvd_idx)
return self._process_next_batch(batch)
# 在outstandings这个东西消耗完之后,就直接shutdown workers, raise StopIteration
if self.batches_outstanding == 0:
self._shutdown_workers()
raise StopIteration
while True:
assert (not self.shutdown and self.batches_outstanding > 0)
idx, batch = self._get_batch()
self.batches_outstanding -= 1
if idx != self.rcvd_idx: # 这里的机制就必须按照rcvd_idx的顺序来。
# store out-of-order samples
self.reorder_dict[idx] = batch
continue
return self._process_next_batch(batch)
next = __next__ # Python 2 compatibility
def __iter__(self):
return self
def _put_indices(self):
assert self.batches_outstanding < 2 * self.num_workers
indices = next(self.sample_iter, None)
if indices is None:
return
self.index_queues[self.worker_queue_idx].put((self.send_idx, indices))
self.worker_queue_idx = (self.worker_queue_idx + 1) % self.num_workers
self.batches_outstanding += 1
self.send_idx += 1
def _process_next_batch(self, batch):
self.rcvd_idx += 1
self._put_indices()
if isinstance(batch, _utils.ExceptionWrapper):
raise batch.exc_type(batch.exc_msg)
return batch
def __getstate__(self):
"""
TODO:为HogWild添加有限的picking支持,以便跨多个线程共享迭代器。
最好的方法可能是将示例推送到单独的线程,然后只共享数据队列,
但如果没有非阻塞的API,则发送结束信号是很困难的。
"""
raise NotImplementedError("_DataLoaderIter cannot be pickled")
def _shutdown_workers(self):
# See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the logic of this function.
python_exit_status = _utils.python_exit_status
if python_exit_status is True or python_exit_status is None:
# See (2) of the note. If Python is shutting down, do no-op.
return
# Normal exit when last reference is gone / iterator is depleted. See (1) and the second half of the note.
if not self.shutdown:
self.shutdown = True
# Removes pids from the C side data structure first so worker termination afterwards won't trigger false positive error report.
if self.worker_pids_set:
_utils.signal_handling._remove_worker_pids(id(self))
self.worker_pids_set = False
self.done_event.set()
# Exit `pin_memory_thread` first because exiting workers may leave
# corrupted data in `worker_result_queue` which `pin_memory_thread` reads from.
if hasattr(self, 'pin_memory_thread'):
self.worker_result_queue.cancel_join_thread()
self.worker_result_queue.put(None)
self.pin_memory_thread.join()
self.worker_result_queue.close()
# Exit workers now.
for q in self.index_queues:
q.put(None)
# Indicate that no more data will be put on this queue by the current process.
q.close()
for w in self.workers:
w.join()
def __del__(self):
if self.num_workers > 0:
self._shutdown_workers()
def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
global _use_shared_memory
_use_shared_memory = True
# Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
# module's handlers are executed after Python returns from C low-level
# handlers, likely when the same fatal signal happened again already.
# https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
_set_worker_signal_handlers()
torch.set_num_threads(1)
random.seed(seed)
torch.manual_seed(seed)
if init_fn is not None: # 初始化worker
init_fn(worker_id)
watchdog = ManagerWatchdog()
while True:
try:
r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL)
except queue.Empty:
if watchdog.is_alive():
continue
else:
break
if r is None:
break
idx, batch_indices = r
try:
samples = collate_fn([dataset[i] for i in batch_indices])
except Exception:
data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
else:
data_queue.put((idx, samples)) # 把idx和samples放进了全局的worker_result_queue里面
del samples