zoukankan      html  css  js  c++  java
  • 实验3:OpenFlow协议分析实践

    实验3:OpenFlow协议分析实践

    搭建并配置拓扑

    miniedit导出的python文件:

    image-20210922195039887

    #!/usr/bin/env python
    
    from mininet.net import Mininet
    from mininet.node import Controller, RemoteController, OVSController
    from mininet.node import CPULimitedHost, Host, Node
    from mininet.node import OVSKernelSwitch, UserSwitch
    from mininet.node import IVSSwitch
    from mininet.cli import CLI
    from mininet.log import setLogLevel, info
    from mininet.link import TCLink, Intf
    from subprocess import call
    
    def myNetwork():
    
        net = Mininet( topo=None,
                       build=False,
                       ipBase='192.168.0.0/24')
    
        info( '*** Adding controller
    ' )
        c0=net.addController(name='c0',
                          controller=Controller,
                          protocol='tcp',
                          port=6633)
    
        info( '*** Add switches
    ')
        s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
        s2 = net.addSwitch('s2', cls=OVSKernelSwitch)
    
        info( '*** Add hosts
    ')
        h1 = net.addHost('h1', cls=Host, ip='192.168.0.101/24', defaultRoute=None)
        h2 = net.addHost('h2', cls=Host, ip='192.168.0.102/24', defaultRoute=None)
        h3 = net.addHost('h3', cls=Host, ip='192.168.0.103/24', defaultRoute=None)
        h4 = net.addHost('h4', cls=Host, ip='192.168.0.104/24', defaultRoute=None)
    
        info( '*** Add links
    ')
        net.addLink(h1, s1)
        net.addLink(s1, s2)
        net.addLink(s2, h2)
        net.addLink(s2, h4)
        net.addLink(s1, h3)
    
        info( '*** Starting network
    ')
        net.build()
        info( '*** Starting controllers
    ')
        for controller in net.controllers:
            controller.start()
    
        info( '*** Starting switches
    ')
        net.get('s1').start([c0])
        net.get('s2').start([c0])
    
        info( '*** Post configure switches and hosts
    ')
    
        CLI(net)
        net.stop()
    
    if __name__ == '__main__':
        setLogLevel( 'info' )
        myNetwork()
    
    

    抓取OpenFlow1.0数据包

    查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

    13518665

    HELLO

    首先控制器和交换机互相发送HELLO报文,可以看到控制器openflow版本为1.0,交换机openflow为1.5,按照规定选择二者间较小的版本,故双方确定版本为1.0

    控制器向交换价发送HELLO

    image-20210922175148025

    交换机向控制器发送HELLO报文

    image-20210922175608822

    FEATURES_REQUEST/FEATURES_REPLY

    控制器向交换机发送FEATURES_REQUEST询问交换机信息

    image-20210922175858361

    交换机收到FEATURES_REQUEST之后随即发送FEATURES_REPLY,将自己的信息发送至控制器image-20210922180031241

    SET_CONFIG

    控制器向交换机发送发送SET_CONFIG消息以发送设置信息,也可能发送GET_CONFIG请求消息以查询OpenFlow交换机的设置状态

    image-20210922180548842

    PORT_STATUS

    当交换机端口发生变化时,告知控制器相应的端口状态。

    image-20210922183541813

    PACKET_IN

    使用PACKET_IN消息的目的是为了将到达交换机的数据包发送至控制器,以下两种情况即可发送PACK_IN消息。

    • 不存在与流表项一直的项目时
    • 匹配到流表项为记载的行动是“发送至控制器”时

    如图为交换机向控制器发送数据包,数据部分包含包的一些信息

    image-20210922181342306

    PACKET_OUT

    PACKET_OUT是从控制器向交换机发送的消息,包含数据包发送命令的消息

    image-20210922182338409

    FLOW_MOD

    控制器通过向交换机发送FLOW_MOD,来对交换机进行流表的添加、删除、变更等设置操作。

    image-20210922182511767

    采用协议

    回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

    很显然,从截图中可以看到运输层采用的协议是TCP(Transmission Control Protocol)

    进阶要求

    将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

    HELLO

    image-20210922184044544

    源码:

    struct ofp_header {
        uint8_t version;    /* OFP_VERSION. */
        uint8_t type;       /* One of the OFPT_ constants. */
        uint16_t length;    /* Length including this ofp_header. */
        uint32_t xid;       /* Transaction id associated with this packet.
                               Replies use the same id as was in the request
                               to facilitate pairing. */
    };
    struct ofp_hello {
        struct ofp_header header;
    };
    

    可以看到对应了HELLO报文的四个参数

    FEATURES_REQUEST

    image-20210922184327455

    可以看到格式与上述ofp_header结构体中数据相同

    FEATURES_REPLY

    image-20210922185303336

    源码:

    struct ofp_switch_features {
        struct ofp_header header;
        uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                                   a MAC address, while the upper 16-bits are
                                   implementer-defined. */
    
        uint32_t n_buffers;     /* Max packets buffered at once. */
    
        uint8_t n_tables;       /* Number of tables supported by datapath. */
        uint8_t pad[3];         /* Align to 64-bits. */
    
        /* Features. */
        uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
        uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */
    
        /* Port info.*/
        struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                          is inferred from the length field in
                                          the header. */
    };
    /* Description of a physical port */
    struct ofp_phy_port {
        uint16_t port_no;
        uint8_t hw_addr[OFP_ETH_ALEN];
        char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
    
        uint32_t config;        /* Bitmap of OFPPC_* flags. */
        uint32_t state;         /* Bitmap of OFPPS_* flags. */
    
        /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
         * unsupported or unavailable. */
        uint32_t curr;          /* Current features. */
        uint32_t advertised;    /* Features being advertised by the port. */
        uint32_t supported;     /* Features supported by the port. */
        uint32_t peer;          /* Features advertised by peer. */
    };
    

    可以看到与图中信息一一对应,包括交换机物理端口的信息

    SET_CONFIG

    image-20210922185732115

    源码:

    控制器下发的交换机配置数据结构体

    /* Switch configuration. */
    struct ofp_switch_config {
        struct ofp_header header;
        uint16_t flags;             /* OFPC_* flags. */
        uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                       send to the controller. */
    };
    

    PORT_STATUS

    image-20210922190051688

    源码:

    /* A physical port has changed in the datapath */
    struct ofp_port_status {
        struct ofp_header header;
        uint8_t reason;          /* One of OFPPR_*. */
        uint8_t pad[7];          /* Align to 64-bits. */
        struct ofp_phy_port desc;
    };
    

    PACKET_IN

    image-20210922190249406

    源码:

    前面提到packetin分两种情况,一种是没有匹配,但是这种包没有抓到过

    enum ofp_packet_in_reason {
        OFPR_NO_MATCH,          /* No matching flow. */
        OFPR_ACTION             /* Action explicitly output to controller. */
    };
    

    另外一种是固定收到向控制器发送包

    struct ofp_packet_in {
        struct ofp_header header;
        uint32_t buffer_id;     /* ID assigned by datapath. */
        uint16_t total_len;     /* Full length of frame. */
        uint16_t in_port;       /* Port on which frame was received. */
        uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
        uint8_t pad;
        uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                                   so the IP header is 32-bit aligned.  The
                                   amount of data is inferred from the length
                                   field in the header.  Because of padding,
                                   offsetof(struct ofp_packet_in, data) ==
                                   sizeof(struct ofp_packet_in) - 2. */
    };
    

    PACKET_OUT

    image-20210922191013499

    struct ofp_packet_out {
        struct ofp_header header;
        uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
        uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
        uint16_t actions_len;         /* Size of action array in bytes. */
        struct ofp_action_header actions[0]; /* Actions. */
        /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                         from the length field in the header.
                                         (Only meaningful if buffer_id == -1.) */
    };
    

    FLOW_MOD

    image-20210922190847617

    源码:

    struct ofp_flow_mod {
        struct ofp_header header;
        struct ofp_match match;      /* Fields to match */
        uint64_t cookie;             /* Opaque controller-issued identifier. */
    
        /* Flow actions. */
        uint16_t command;             /* One of OFPFC_*. */
        uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
        uint16_t hard_timeout;        /* Max time before discarding (seconds). */
        uint16_t priority;            /* Priority level of flow entry. */
        uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                         Not meaningful for OFPFC_DELETE*. */
        uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                         matching entries to include this as an
                                         output port.  A value of OFPP_NONE
                                         indicates no restriction. */
        uint16_t flags;               /* One of OFPFF_*. */
        struct ofp_action_header actions[0]; /* The action length is inferred
                                                from the length field in the
                                                header. */
    };
    struct ofp_action_header {
        uint16_t type;                  /* One of OFPAT_*. */
        uint16_t len;                   /* Length of action, including this
                                           header.  This is the length of action,
                                           including any padding to make it
                                           64-bit aligned. */
        uint8_t pad[4];
    };
    

    总结

    这次作业的难度中等,主要在于了解OpenFlow协议在交换机和控制器间的交互过程,但是在实验过程中遇到了两个问题:

    • miniedit导出的拓扑代码,再次运行时无法指定openflow的协议,因为不影响后续实验,所以暂时不深究
    • OVS交换机采用的openflow协议版本为1.5,所以起初以为没有抓到交换机应答的HELLO包

    此外,这次的进阶要求,要求查看源码,所以也是一个对源码阅读的挑战。当然,可以很快的找到关键源码在openflow安装目录中的openflow/include/openflow/openflow.h头文件里,通过不断比对源码中定义的结构体和抓到的包的报文结构,学习到openflow协议在代码上是如何体现的。但是由于有些报文类型如PACKET_IN的两种触发形式,对于这类报文,没有抓取到。今后,还需要了解其触发机制,抓取报文下来进行查看。

  • 相关阅读:
    函数即变量
    装饰器模型
    团队配合指令
    三元指令
    虚实之门
    for的逻辑
    我写的第4个程序(日志最近行读取函数)
    还在用WebBrowser吗?你out了!
    关于打印机共享的注意事项——又被叫去修电脑了
    MVVM转换器Int2StringConverter基础类
  • 原文地址:https://www.cnblogs.com/JoshuaYu/p/15321393.html
Copyright © 2011-2022 走看看