zoukankan      html  css  js  c++  java
  • 答疑

    1、对语音识别的对抗攻击

    2、对抗样本细分方向:

    如何找到一个更好的攻击方法,此方法不见得有多么鲁棒,但是一定要幅值最小。

    因此需要找到一个幅值最小,能够跨越分类边界的样本。

    3、防守方:如何证明鲁棒性,能不能证明在自然的某个范围内是肯定不会受到攻击的

    4、如何将对抗样本和模型可解释性联系起来。

    5、现有的攻击方法都是在原图上做的,暂时没有变换到变换域(如频域上)做的

    6、针对对抗样本防守:

    添加正则使得模型更加鲁棒

    7、一般跨模型的难以实现

    8、FCN上直接去做(除了直接求导去做)

    9、query-base,针对API来攻击,针对输出,自己也没有模型

    10、攻击自动驾驶系统(交通标志),欺骗谷歌、face++、商汤科技提供的在线API的人脸识别,骗贷款

    11、大公司不怎么考虑,应用方向较少

    12、adversarial transformation network

    13、应用前景

  • 相关阅读:
    MLE
    AHOI/HNOI2018道路
    AHOI/HNOI2018排列
    推式子
    AHOI/HNOI2018游戏
    ! BJOI2018治疗之雨
    BJOI2018链上二次求和
    BJOI2018双人猜数游戏
    ! BJOI2018染色
    BJOI2018二进制
  • 原文地址:https://www.cnblogs.com/Josie-chen/p/9884259.html
Copyright © 2011-2022 走看看