给定 (n, m, p) ,令 (k=displaystylesum_{i=1}^mvarphi(i imes n)pmod{10^9+7})
求 (k^{k^{k^{cdots^{k}}}}pmod{p})
共 (T) 组询问, (n) 无平方因子
(Tleq100, n, m, pleq10^7)
数论,计数
令 (f(n, m)=displaystylesum_{i=1}^mvarphi(i imes n)) 。假设 (p) 是 (n) 的一个质因子,若 ((i, n)=1) ,则 (varphi(i imes n)=varphi(i) imesvarphi(n)) ,否则若 (p | i) ,可以将 (i) 看作 (k imes p) ,否则 (p ot |;i) ,于是分类讨论
[egin{aligned}f(n, m)&=displaystylesum_{i=1}^m{[p | i](varphi(p) imesvarphi(i imesfrac{n}{p}))}+sum_{i=1}^{frac{m}{p}}varphi(i imes n imes p)\&=varphi(p) imessum_{i=1}^m{[p
ot|;i]varphi(i imesfrac{n}{p})+p imessum_{i=1}^{frac{m}{p}}varphi(i imes n)}\&=varphi(p) imessum_{i=1}^m{[p
ot|;i]varphi(i imesfrac{n}{p})+(varphi(p)+1) imessum_{i=1}^{frac{m}{p}}varphi(i imes n)}\&=varphi(p) imessum_{i=1}^m{[p
ot|;i]varphi(i imesfrac{n}{p})}+varphi(p) imessum_{i=1}^{frac{m}{p}}varphi(i imes n)+sum_{i=1}^{frac{m}{p}}varphi(i imes n)end{aligned}
]
但前两项是可以合并的,第二项恰好将第一项补全了,于是
[f(n, m)=varphi(p) imessum_{i=1}^mvarphi(i imesfrac{n}{p})+sum_{i=1}^{frac{m}{p}}varphi(i imes n)
]
所以 $$f(n, m)=varphi(p) imes f(frac{n}{p}, m)+f(n, frac{m}{p})$$
递归时枚举一个质因子就够了
而求 (k^{k^{k^{cdots^{k}}}}pmod{p}) 直接用欧拉定理就可以了
时间复杂度 (O() 能过 ())
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e7 + 10, P = 1e9 + 7;
int tot, p[maxn], phi[maxn], sum[maxn];
inline int inc(int x, int y) {
return x + y < P ? x + y : x + y - P;
}
inline int qp(int a, int k, int P) {
int res = 1;
for (; k; k >>= 1, a = 1ll * a * a % P) {
if (k & 1) res = 1ll * res * a % P;
}
return res;
}
void sieve() {
int N = 10000000;
for (int i = 2; i <= N; i++) {
if (!p[i]) p[++tot] = i, phi[i] = i - 1;
for (int j = 1; j <= tot && i * p[j] <= N; j++) {
p[i * p[j]] = 1;
if (i % p[j] == 0) {
phi[i * p[j]] = phi[i] * p[j]; break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
phi[1] = 1;
for (int i = 1; i <= N; i++) {
sum[i] = inc(sum[i - 1], phi[i]);
}
}
int dfs(int a, int P) {
int t = phi[P];
return t == 1 ? 0 : qp(a, dfs(a, t) % t + t, P);
}
int calc(int n, int m) {
if (!m) return 0;
if (n == 1) return sum[m];
int tmp = sqrt(n);
for (int i = 2; i <= tmp; i++) {
if (n % i == 0) {
return (calc(n, m / i) + 1ll * phi[i] * calc(n / i, m)) % P;
}
}
return (calc(n, m / n) + 1ll * phi[n] * sum[m]) % P;
}
int main() {
sieve();
int n, m, p;
while (~scanf("%d %d %d", &n, &m, &p)) {
printf("%d
", dfs(calc(n, m), p));
}
return 0;
}