zoukankan      html  css  js  c++  java
  • 马士兵hadoop2.7.3_mapreduce笔记

    • java开发map_reduce程序
    • 配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)
      把HADOOP_HOME/bin加到PATH环境变量(非必要,只是为了方便)
    • 如果是在windows下开发,需要添加windows的库文件
      1. 把盘中共享的bin目录覆盖HADOOP_HOME/bin
      2. 如果还是不行,把其中的hadoop.dll复制到c:windowssystem32目录下,可能需要重启机器
    • 建立新项目,引入hadoop需要的jar文件
    • 代码WordMapper:     
        • 1
          2
          3
          4
          5
          6
          7
          8
          9
          10
          11
          12
          13
          14
          15
          16
          17
          18
          19
          20
          21
          import java.io.IOException;
          import org.apache.hadoop.io.IntWritable;
          import org.apache.hadoop.io.LongWritable;
          import org.apache.hadoop.io.Text;
          import org.apache.hadoop.mapreduce.Mapper;
           
           
          public class WordMapper extends Mapper<LongWritable,Text, Text, IntWritable> {
           
              @Override
              protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                      throws IOException, InterruptedException {
                  String line = value.toString();
                  String[] words = line.split(" ");
                  for(String word : words) {
                      context.write(new Text(word), new IntWritable(1));
                  }
              }
               
          }
        • 代码WordReducer:
          1
          2
          3
          4
          5
          6
          7
          8
          9
          10
          11
          12
          13
          14
          15
          16
          17
          18
          19
          20
          import java.io.IOException;
          import org.apache.hadoop.io.IntWritable;
          import org.apache.hadoop.io.LongWritable;
          import org.apache.hadoop.io.Text;
          import org.apache.hadoop.mapreduce.Reducer;
           
          public class WordReducer extends Reducer<Text, IntWritable, Text, LongWritable> {
           
              @Override
              protected void reduce(Text key, Iterable<IntWritable> values,
                      Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
                  long count = 0;
                  for(IntWritable v : values) {
                      count += v.get();
                  }
                  context.write(key, new LongWritable(count));
              }
               
          }
        • 代码Test:
          1
          2
          3
          4
          5
          6
          7
          8
          9
          10
          11
          12
          13
          14
          15
          16
          17
          18
          19
          20
          21
          22
          23
          24
          25
          26
          27
          28
          29
          30
          import org.apache.hadoop.conf.Configuration;
          import org.apache.hadoop.fs.Path;
          import org.apache.hadoop.io.IntWritable;
          import org.apache.hadoop.io.LongWritable;
          import org.apache.hadoop.io.Text;
          import org.apache.hadoop.mapreduce.Job;
          import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
          import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
           
           
          public class Test {
              public static void main(String[] args) throws Exception {
                  Configuration conf = new Configuration();
                                   
                  Job job = Job.getInstance(conf);
                   
                  job.setMapperClass(WordMapper.class);
                  job.setReducerClass(WordReducer.class);
                  job.setMapOutputKeyClass(Text.class);
                  job.setMapOutputValueClass(IntWritable.class);
                  job.setOutputKeyClass(Text.class);
                  job.setOutputValueClass(LongWritable.class);
                   
                  FileInputFormat.setInputPaths(job, "c:/bigdata/hadoop/test/test.txt");
                  FileOutputFormat.setOutputPath(job, new Path("c:/bigdata/hadoop/test/out/"));
                   
                  job.waitForCompletion(true);
              }
          }
        • 把hdfs中的文件拉到本地来运行
          1
          2
          3
          FileInputFormat.setInputPaths(job, "hdfs://master:9000/wcinput/");
          FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wcoutput2/"));
          注意这里是把hdfs文件拉到本地来运行,如果观察输出的话会观察到jobID带有local字样
          同时这样的运行方式是不需要yarn的(自己停掉yarn服务做实验)
        • 在远程服务器执行
          1
          2
          3
          4
          5
          6
          7
          conf.set("fs.defaultFS", "hdfs://master:9000/");
           
          conf.set("mapreduce.job.jar", "target/wc.jar");
          conf.set("mapreduce.framework.name", "yarn");
          conf.set("yarn.resourcemanager.hostname", "master");
          conf.set("mapreduce.app-submission.cross-platform", "true");
          1
          2
          3
          FileInputFormat.setInputPaths(job, "/wcinput/");
          FileOutputFormat.setOutputPath(job, new Path("/wcoutput3/"));
          如果遇到权限问题,配置执行时的虚拟机参数-DHADOOP_USER_NAME=root
        • 也可以将hadoop的四个配置文件拿下来放到src根目录下,就不需要进行手工配置了,默认到classpath目录寻找
        • 或者将配置文件放到别的地方,使用conf.addResource(.class.getClassLoader.getResourceAsStream)方式添加,不推荐使用绝对路径的方式
        • 建立maven-hadoop项目:
          1
          2
          3
          4
          5
          6
          7
          8
          9
          10
          11
          12
          13
          14
          15
          16
          17
          18
          19
          20
          21
          22
          23
          24
          25
          26
          27
          28
          29
          30
          31
          32
          33
          34
          35
          36
          37
          38
          39
            <modelversion>4.0.0</modelversion>
            <groupid>mashibing.com</groupid>
            <artifactid>maven</artifactid>
            <version>0.0.1-SNAPSHOT</version>
            <name>wc</name>
            <description>hello mp</description>
             
             
            <properties>
                  <project.build.sourceencoding>UTF-8</project.build.sourceencoding>
                  <hadoop.version>2.7.3</hadoop.version>
              </properties>
              <dependencies>
                  <dependency>
                      <groupId>junit</groupId>
                      <artifactId>junit</artifactId>
                      <version>4.12</version>
                  </dependency>
                  <dependency>
                      <groupId>org.apache.hadoop</groupId>
                      <artifactId>hadoop-client</artifactId>
                      <version>${hadoop.version}</version>
                  </dependency>
                  <dependency>
                      <groupId>org.apache.hadoop</groupId>
                      <artifactId>hadoop-common</artifactId>
                      <version>${hadoop.version}</version>
                  </dependency>
                  <dependency>
                      <groupId>org.apache.hadoop</groupId>
                      <artifactId>hadoop-hdfs</artifactId>
                      <version>${hadoop.version}</version>
                  </dependency>
              </dependencies>
             
             
          </project>
        • 配置log4j.properties,放到src/main/resources目录下
          1
          2
          3
          4
          5
          6
          log4j.rootCategory=INFO, stdout
           
          log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
          log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
          log4j.appender.stdout.layout.ConversionPattern=[QC] %p [%t] %C.%M(%L) | %m%n
  • 相关阅读:
    最短路小变形
    最短路
    bfs + 路径输出
    优先队列
    dijkstra
    重载运算符-operator
    最短路
    二分图匹配
    依赖型的关系建立
    string 类
  • 原文地址:https://www.cnblogs.com/Jxiaobai/p/6649827.html
Copyright © 2011-2022 走看看