zoukankan      html  css  js  c++  java
  • 【机器学习】主成分分析法 PCA (II)

    主成分分析法(PAC)的优化——选择主成分的数量

    根据上一讲,我们知道协方差为

    而训练集的方差为②。

    我们希望在方差尽可能小的情况下选择尽可能小的K值。

    也就是说我们需要找到k值使得①/②的值尽可能小(≤0.01)

    那么我们可以先令K = 1 然后进行主要成分分析,得到U reduce 和 Z 计算其比例是否小鱼0.01,如果不是就令K = 2 再进行计算。

    直到找到使得比例满足的k的最小值。

    不过,在octave中,我们也利用在调用svd函数时候,得到的 S,U ,V参数进行判断。S是一个n×n的对角矩阵,它的元素都在左对角线上。因此可以计算

    从而得到k的值。并且在压缩后,我们可以依据

    (其中 x approx ≈ x)来还原之前未被压缩的数据。

    主成分分析法在机器学习过程中的应用:

    例如,将100*100的图像压缩到1000个特征。

    step 1)用PCA对特征值进行压缩

    step 2)对训练集使用学习算法。

    step 3)在预测时,采用学习得到的Ureduce将x特征转化成Z特征再进行预测。

    使用时候可能存在的误区:

    1)不要用PCA进行对过拟合的修正,此时可以尝试归一化。主要成分分析算法只是丢掉一些特征,不会考虑任何与结果有关的变量,这样做容易使对于本学习算法得重要的特征信息丢失。

    2)降维不是所有机器学习算法的必要过程,因此不是所有的算法都要去使用,只是当算法运算太慢或者太消耗内存的时候,我们才会去考虑使用PCA算法进行优化。

  • 相关阅读:
    node的http与前端交互示例(入门)
    PC监听鼠标和键盘事件,定时无响应退出
    日常问题记录
    基于node.js的websocket 前后端交互小功能
    基于node.js的websocket上传小功能
    阿里云服务器(Linux)上打开新端口
    云服务器初尝试
    wx小程序知识点(八)
    wx小程序知识点(七)
    点绘,线绘,图绘
  • 原文地址:https://www.cnblogs.com/KID-XiaoYuan/p/7382807.html
Copyright © 2011-2022 走看看