zoukankan      html  css  js  c++  java
  • 广义相对论 的 偏微分方程 描述 的 是 引力场, 不是 弯曲的 空间 (时空)

    广义相对论 的 偏微分方程 描述 的 是 引力场,  不是 弯曲的 空间 (时空)   。

    老爱 说 质点 在 引力场 中 的 运动轨迹 是 “短程线”,    绝对 是 一拍脑袋 的 结果 。    老爱 对此 肯定 没有 数学证明,  也没有 科学家 为 他 证明  。

    你让 广义相对论 拿出  弯曲 的 空间 (时空),   它 拿不出来 。    拿出 弯曲 的 空间 (时空) 的 曲面方程,  它 也 拿不出来 。 因为 算不出来,  也不知道 怎么算  。

    为什么 算不出来 ?    因为 老爱 的 一句话  “短程线”,   让 这 成了 大难题  。

    “短程线”  意味着  引力场 的 背后 有 一个 弯曲的  空间 (时空),    数学 上 是 一个 n 维 曲面,   但 根据 引力场 去 计算 这个 n 维 曲面, 数学 能做到吗 ?

    反过来,    这个 n 维 曲面 是否存在,    有 数学证明 吗 ?

    质点 在 引力场 里 的 轨迹 是 曲线 C,   求 短程线 是 C 的 n 维 曲面,   嗯,  这是个 问题  。

    了解了 这个 架构,   你也可以 构造 自己 的 “广义相对论”,    就是说,  可以 自己 构造 相似 的 理论,    这 其实 不难  。

    还有 张量 、度规 、矩阵 、坐标系旋转  什么的,  也可以 自己 定义 一套 出来,   这些 是 数学,  也有 计算机思维  ,

    所以,  黎曼 、希尔伯特 ?     等 数学家 在 那个 年代 就 具有 计算机思维,     又或是 ,  后世 的 计算机科学 受到 他们 的 影响 ?

  • 相关阅读:
    面试题 08.02. 迷路的机器人(C++)
    URI和URL的区别
    Kali Linux自定义分辨率设置
    CentOS最小化安装后配置NAT网络模式
    CentOS7.5安装及最小安装后联网配置--联网配置
    CentOS7.5安装及最小安装后联网配置--系统安装
    基数排序
    归并排序
    堆排序
    简单选择排序
  • 原文地址:https://www.cnblogs.com/KSongKing/p/13626905.html
Copyright © 2011-2022 走看看