Max Sum Plus Plus
Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, jm) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j xis not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Examples
Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Output
6 8
正确解法:
dp太难了,妈妈救我。
题目的意思是,在n个数字中找到m个不相交的序列,求这序列和最大。
设前i个序列中最后一位数字的下标为j的序列和为 f[i][j]
f[i][j]=max(f[i][j-1],f[i-1][k])+a[j]; (i-1<=k< j)
在找 f[i][j] 时,最后一位数字下标为j时,要么这个数字跟着前一个序列 f[i][j-1]+a[j],要么这个数字新开一个序列 找一个比 i-1大的 比 j 小的序列的最大数加上a[j]。
理论上是这样,复杂度是o(M*N*N) 会超时QAQ
后来用一个数组更新最大值balabala就看不懂了,挖坑QAQ
1 #include<iostream> 2 #include<cstdio> 3 #include<string> 4 #include<cstring> 5 #include<map> 6 #include<algorithm> 7 #include<cmath> 8 using namespace std; 9 int m, n, a[1000100]; 10 int f[1000100],ma[1000100],maxx; 11 int main() 12 { 13 while (cin >> m >> n) 14 { 15 memset(a, 0, sizeof(a)); 16 memset(f, 0, sizeof(f)); 17 memset(ma, 0, sizeof(ma)); 18 for (int i = 1; i <= n; i++) 19 cin >> a[i]; 20 for (int i = 1; i <= m; i++) 21 { 22 maxx = -9999999; 23 for (int j = i; j <= n; j++) 24 { 25 f[j] = max(f[j - 1], ma[j - 1]) + a[j]; 26 ma[j - 1] = maxx; 27 maxx = max(maxx, f[j]); 28 } 29 } 30 cout << maxx << endl; 31 } 32 return 0; 33 }
自己动不动就挖坑,哭了