zoukankan      html  css  js  c++  java
  • AtCoder Beginner Contest 217 【A

    比赛链接:https://atcoder.jp/contests/abc217/tasks

    A - Lexicographic Order

    题意

    给出两个字符串 (s,t) ,若 (s) 字典序小于 (t) 输出 Yes ,否则输出 No

    题解

    模拟。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        string s, t;
        cin >> s >> t;
        cout << (s < t ? "Yes" : "No") << "
    ";
        return 0;
    }
    

    B - AtCoder Quiz

    题意

    给出 ABCARCAGCAHC 四个字符串中的三个,输出剩下的那一个。

    题解

    模拟。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        int x = 'B' ^ 'R' ^ 'G' ^ 'H';
        for (int i = 0; i < 3; i++) {
            string s;
            cin >> s;
            x ^= s[1];
        }
        cout << 'A' << char(x) << 'C' << "
    ";
        return 0;
    }
    

    C - Inverse of Permutation

    题意

    给出一个排列,依次输出 (1,2,dots,n) 的下标。

    题解

    模拟。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        int n;
        cin >> n;
        vector<int> a(n);
        for (int i = 0; i < n; i++) {
            cin >> a[i];
        }
        vector<int> p(n);
        iota(p.begin(), p.end(), 0);
        sort(p.begin(), p.end(), [&](int x, int y) {
            return a[x] < a[y];
        });
        for (auto i : p) {
            cout << i + 1 << ' ';
        }
        return 0;
    }
    

    D - Cutting Woods

    题意

    有一根长为 (l) 米的木棒,从左端起每隔 (1) 米有一个标记,给出 (q) 次格式为 ((c_i, x_i)) 的询问:

    • (c_i = 1) ,将木棒从标记 (x_i) 处锯开
    • (c_i = 2) ,输出标记 (x_i) 所在木棒的长度,保证不曾从 (x_i) 处锯开过

    题解

    记录所有被锯开的标记,某个标记所在木棒的长度即左右最近被锯开的两个标记间的距离。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        int l, q;
        cin >> l >> q;
        set<int> st{0, l};
        while (q--) {
            int c, x;
            cin >> c >> x;
            if (c == 1) {
                st.insert(x);            
            } else {
                auto it = st.upper_bound(x);
                cout << *it - *prev(it) << "
    ";
            }
        }
        return 0;
    }
    

    E - Sorting Queries

    题意

    开始时有一个空序列 (a) ,给出 (q) 次询问:

    • 1 x ,将 (x) 添加至 (a) 末尾
    • 2 ,输出序列 (a) 首部的元素
    • 3 ,将序列 (a) 排为升序

    题解

    利用 queuepriority_queue 模拟。

    1 x ,将 (x) 添加至 queue 末尾

    2 ,输出 priority_queue 的首部,若其为空,输出 queue 的首部

    3 ,把 queue 中的所有元素弹入 priority_queue

    代码

    #include <bits/stdc++.h>
    using namespace std;
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        priority_queue<int, vector<int>, greater<int>> pque;
        queue<int> que;
        int q;
        cin >> q;
        while (q--) {
            int op;
            cin >> op;
            if (op == 1) {
                int x;
                cin >> x;
                que.push(x);
            } else if (op == 2) {
                if (not pque.empty()) {
                    cout << pque.top() << "
    ";
                    pque.pop();
                } else {
                    cout << que.front() << "
    ";
                    que.pop();
                }
            } else {
                while (not que.empty()) {
                    pque.push(que.front());
                    que.pop();
                }
            }
        }
        return 0;
    }
    

    F - Make Pair

    题意

    (2n) 个学生站为一排,编号为 (1,2,dots,2n) ,给出这 (2n) 个学生中的 (m) 对好关系。

    老师想要进行 (n) 次操作:

    • 选择两个相邻且为好关系的学生,将他们移去,若留下间隙,两边的学生保持原次序合并

    计算老师有多少种方案来进行这 (n) 次操作。

    题解

    区间 (dp)

    (dp[l][r]) 为移去区间 ([l, r]) 所需进行的 (frac{(r - l + 1)}{2}) 次操作的方案数,显然区间长度 ((r - l + 1)) 须为 (2) 的倍数。

    对于较大区间 ([l, r]) 的更新,可以通过枚举与 (l) 配对的点 (x) 来进行,若 ((l, x)) 为好关系,则有状态转移方程:

    [dp[l][r] = dp[l + 1][x - 1] cdot dp[x + 1][r] cdot C_{p + q}^{p} ]

    其中, (p = frac{(x - 1) - (l + 1) + 1}{2} + 1)(q = frac{r - (x + 1) + 1}{2}) ,即区间 ([l, x])([x + 1, r]) 各自需要操作的次数。

    因为移去 ((l, x)) 一定会先移去它们间的 ([l + 1, x- 1]) ,所以 (p) 次操作的方案数为 (dp[l + 1][x - 1])(q) 次操作的方案数为 (dp[x + 1][r]) ,剩下所需决定的即 (p + q) 次操作的顺序关系。

    因为方案数已包含在 (dp) 中,所以 (p) 次操作两两无差别, (q) 次操作两两无差别,答案即 (C_{p + q}^{p}(C_{p + q}^{q})) ,含义为从总共 (p + q) 个位置中选择 (p(q)) 个放置 (p(q)) 次操作。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    constexpr int N = 405;
    constexpr int MOD = 998244353;
    
    int norm(int x) { if (x < 0) { x += MOD; } if (x >= MOD) { x -= MOD; } return x; }
    template<class T> T binpow(T a, int b) { T res = 1; for (; b; b /= 2, a *= a) { if (b % 2) { res *= a; } } return res; }
    
    struct Z {
        int x;
        Z(int x = 0) : x(norm(x)) {}
        int val() const { return x; }
        Z operator-() const { return Z(norm(MOD - x)); }
        Z inv() const { assert(x != 0); return binpow(*this, MOD - 2); }
        Z &operator*=(const Z &rhs) { x = 1LL * x * rhs.x % MOD; return *this; }
        Z &operator+=(const Z &rhs) { x = norm(x + rhs.x); return *this; }
        Z &operator-=(const Z &rhs) { x = norm(x - rhs.x); return *this; }
        Z &operator/=(const Z &rhs) { return *this *= rhs.inv(); }
        friend Z operator*(const Z &lhs, const Z &rhs) { Z res = lhs; res *= rhs; return res; }
        friend Z operator+(const Z &lhs, const Z &rhs) { Z res = lhs; res += rhs; return res; }
        friend Z operator-(const Z &lhs, const Z &rhs) { Z res = lhs; res -= rhs; return res; }
        friend Z operator/(const Z &lhs, const Z &rhs) { Z res = lhs; res /= rhs; return res; }
    };
    
    struct Combination {
        vector<Z> fac, inv;
    
        Combination(int n) : fac(n), inv(n) {
            fac[0] = 1;
            for (int i = 1; i < n; i++) fac[i] = fac[i - 1] * i;
            inv[n - 1] = fac[n - 1].inv();
            for (int i = n - 2; i >= 0; i--) inv[i] = inv[i + 1] * (i + 1);
        }
    
        Z C(int n, int m){
            if(m < 0 or m > n) return 0;
            return fac[n] * inv[m] * inv[n - m];
        }
    };
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        int n, m;
        cin >> n >> m;
        n *= 2;
        vector<vector<int>> edge(N, vector<int> (N));
        for (int i = 0; i < m; i++) {
            int a, b;
            cin >> a >> b;
            edge[a][b] = true;
        }
        vector<vector<Z>> dp(N, vector<Z> (N));
        Combination C(N);
        for (int l = n; l >= 1; l--) {
            for (int r = l + 1; r <= n; r += 2) {
                for (int x = l + 1; x <= r; x += 2) {
                    if (edge[l][x]) {
                        Z cur = 1;
                        if (l + 1 <= x - 1) {
                            cur *= dp[l + 1][x - 1];
                        }
                        if (x + 1 <= r) {
                            cur *= dp[x + 1][r];
                        }
                        int p = (l + 1 <= x - 1 ? ((x - 1) - (l + 1) + 1) / 2 : 0) + 1;
                        int q = (x + 1 <= r ? (r - (x + 1) + 1) / 2 : 0);
                        cur *= C.C(p + q, p);
                        dp[l][r] += cur;
                    }
                }
            }
        }
        cout << dp[1][n].val() << "
    ";
        return 0;
    }
    

    G - Groups

    题意

    给出两个数 (n, m) ,当 (k = 1, 2, dots, n) 时,计算:

    • (1)(n) 分为 (k) 组,且模 (m) 相同的数不能分在一组的方案数

    题解

    数据范围较小,这里记录一下 (O_{(n^2)}) 的解法。

    (dp[i][j]) 为前 (i) 个数分为 (j) 组的方案数,则有转移方程:

    [dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j] imes (j - lfloor frac{(i - 1)}{m} floor) ]

    含义为第 (i) 个数自成一组或分进一个不含同余数的组中。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    constexpr int MOD = 998244353;
    
    int norm(int x) { if (x < 0) { x += MOD; } if (x >= MOD) { x -= MOD; } return x; }
    template<class T> T binpow(T a, int b) { T res = 1; for (; b; b /= 2, a *= a) { if (b % 2) { res *= a; } } return res; }
    
    struct Z {
        int x;
        Z(int x = 0) : x(norm(x)) {}
        int val() const { return x; }
        Z operator-() const { return Z(norm(MOD - x)); }
        Z inv() const { assert(x != 0); return binpow(*this, MOD - 2); }
        Z &operator*=(const Z &rhs) { x = 1LL * x * rhs.x % MOD; return *this; }
        Z &operator+=(const Z &rhs) { x = norm(x + rhs.x); return *this; }
        Z &operator-=(const Z &rhs) { x = norm(x - rhs.x); return *this; }
        Z &operator/=(const Z &rhs) { return *this *= rhs.inv(); }
        friend Z operator*(const Z &lhs, const Z &rhs) { Z res = lhs; res *= rhs; return res; }
        friend Z operator+(const Z &lhs, const Z &rhs) { Z res = lhs; res += rhs; return res; }
        friend Z operator-(const Z &lhs, const Z &rhs) { Z res = lhs; res -= rhs; return res; }
        friend Z operator/(const Z &lhs, const Z &rhs) { Z res = lhs; res /= rhs; return res; }
    };
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        int n, m;
        cin >> n >> m;
        vector<vector<Z>> dp(n + 1, vector<Z> (n + 1));
        dp[0][0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j] * (j - (i - 1) / m);
            }
        }
        for (int i = 1; i <= n; i++) {
            cout << dp[n][i].val() << "
    ";
        }
        return 0;
    }
    

    参考

    https://atcoder.jp/contests/abc217/submissions/25575778

    https://codeforces.com/blog/entry/94543?#comment-835878

    https://codeforces.com/blog/entry/94543?#comment-835926

    https://atcoder.jp/contests/abc217/editorial/2603

  • 相关阅读:
    Android四大组件
    git命令记录
    .net core试水
    记一次NPOI的使用
    上位机开发经验教训总结
    Python爬虫,爬取腾讯漫画实战
    记一次微信小程序的开发
    sql使用cte表达式进行递归查询
    使用百度的webuploader进行附件上传
    Winform文件上传
  • 原文地址:https://www.cnblogs.com/Kanoon/p/15235016.html
Copyright © 2011-2022 走看看