zoukankan      html  css  js  c++  java
  • Deep TEN: Texture Encoding Network

    纹理特征,材料分类(Material Classification),在MINC-2500、Flickr Material Database、KTH-TIPS-2b、4D-Light-Field-Material、GTOS上state-of-the-art(2017年)。

    思想主要来源是:传统图片分类方法都是提取人工设计的特征(SIFT等)然后使用BOW进行编码,再用SVM进行分类,后面BOW被VLAD、Fisher Vector编码替换并融合CNN特征可以达到sota的效果。然而这样的方法有缺点,就是编码和特征的学习并不是end-to-end的,所以作者设计了一个learnable residual encoding layer。作者还提到一般的CNN的方法虽然在图片分类和物体识别上有比较好的效果,但是在纹理识别上表现并不理想,给出的理由是:

    ``` recognizing textures needs for a spatially invariant representation describing the feature distributions instead of concatenation ```

    这篇论文的主要贡献:

    1. learnable residual encoding layer。能够生成鲁棒的残差编码例如(VLAD和Fisher Vector),能接收任意的输入分辨率,并且生成固定长度的特征表示,这种编码方式非常适合pretrained feature的迁移。关于该层的一个后向传播可以看论文的附录A,给了很清楚的推导。一个前向计算如下公式:

    2.将feature extraction, dictionary learning, encoding 融合成一个end-to-end的形式。

    整个网络模型结构:

     开源代码:

    Pytorch:https://github.com/zhanghang1989/PyTorch-Encoding-Layer

    FisherVector的教程:http://www.vlfeat.org/api/fisher-fundamentals.html

    VLAD的教程:http://www.vlfeat.org/api/vlad-fundamentals.html

  • 相关阅读:
    PHP03
    PHP02
    CentOS7安装GeoServer
    uDig配图与GeoServer添加Style
    udig下载、安装及汉化
    Intellij热部署插件JRebel
    IDEA中Lombok插件的安装与使用
    IEDA 自动生成类注释和方法注释
    Elasticsearch中text与keyword的区别
    Elastic search 7.X 去掉了type的原因
  • 原文地址:https://www.cnblogs.com/Key-Ky/p/7183748.html
Copyright © 2011-2022 走看看