zoukankan      html  css  js  c++  java
  • RT-thread 设备驱动组件之SPI设备

         本文主要介绍RT-thread中的SPI设备驱动,涉及到的文件主要有:驱动框架文件(spi_dev.c,spi_core.c,spi.h),底层硬件驱动文件(spi_hard.c,spi_hard.h)。这里spi_hard.c和spi_hard.h是指利用MCU的硬件SPI接口,而不是通过GPIO口来模拟SPI时序。应用SPI设备驱动时,需要在rtconfig.h中宏定义#define RT_USING_SPI。

    一、SPI设备驱动框架

    先来看spi.h中的一些数据结构:

    **
     * SPI message structure
     */
    struct rt_spi_message
    {
        const void *send_buf;
        void *recv_buf;
        rt_size_t length;
        struct rt_spi_message *next;
    
        unsigned cs_take    : 1;
        unsigned cs_release : 1;
    };
    
    /**
     * SPI configuration structure
     */
    struct rt_spi_configuration
    {
        rt_uint8_t mode;
        rt_uint8_t data_width;
        rt_uint16_t reserved;
    
        rt_uint32_t max_hz;
    };
    
    struct rt_spi_ops;
    struct rt_spi_bus
    {
        struct rt_device parent;
        const struct rt_spi_ops *ops;
    
        struct rt_mutex lock;
        struct rt_spi_device *owner;
    };
    
    /**
     * SPI operators
     */
    struct rt_spi_ops
    {
        rt_err_t (*configure)(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
        rt_uint32_t (*xfer)(struct rt_spi_device *device, struct rt_spi_message *message);
    };
    /**
     * SPI Virtual BUS, one device must connected to a virtual BUS
     */
    struct rt_spi_device
    {
        struct rt_device parent;
        struct rt_spi_bus *bus;
    
        struct rt_spi_configuration config;
    };
    #define SPI_DEVICE(dev) ((struct rt_spi_device *)(dev))

    spi_core.c,spi_dev.c这两个文件位于RTTcomponentsdriversspi目录下,而spi.h头文件位于RTT\componentsdriversincludedrivers目录下。可在MKD工程的Drivers组下将上面两个源文件加进行,并将spi.h头文件所在目录添加到工程的include path下。

    spi_core.c文件实现了spi的抽象操作,如注册spi总线(spi_bus),向SPI总线添加设备函数等。注: 这里将MCU的一路spi外设虚拟成spi总线,然后总线上可以挂很多spi设备(spi_device),一个spi_device有一个片选cs。spi总线和spi设备要在RTT中可以生效就必须先向RTT注册,因此就需要使用上面的注册SPI总线函数和向SPI总线中添加SPI设备。

    spi_core.c还包含了配置SPI函数,发送和接收等通信函数,占用和释放SPI总线函数及选择SPI设备函数。这些函数都是抽象出来的,反映出SPI总线上的一些常规操作。真正执行这些操作的过程并不在spi_core.c源文件中,实际上,这些操作信息都是通过注册SPI总线和向总线添加SPI设备时这些操作集就已经"注册"下来了,真正操作时是通过注册信息内的操作函数去实现,也可以说是一种回调操作。spi_core.c中实现的函数主要有:rt_spi_bus_register(); rt_spi_bus_attach_device(); rt_spi_configure(); rt_spi_send_then_send(); rt_spi_send_then_recv(); rt_spi_transfer(); rt_spi_transfer_message(); rt_spi_take_bus(); rt_spi_release_bus(); rt_spi_take(); rt_spi_release()。

    而spi_dev.c实现了SPI设备的一些抽象操作,比如读,写,打开,关闭,初始化等,当然当MCU操作SPI设备的时候,是需要通过SPI总线与SPI设备进行通信的,既然通信就必然会有SPI通信协议,但是通信协议并不在这里具体,spi_dev.c这里还只是SPI设备的抽象操作而已,它只是简单地调用spi_core.c源文件中的抽象通信而已,具体实现还是要靠上层通过SPI总线或SPI设备注册下来的信息而实现的。spi_device.c中实现的函数主要有:_spi_bus_device_read();  _spi_bus_device_write();  _spi_bus_device_control();  rt_spi_bus_device_init();_spidev_device_read();_spidev_device_write();_spidev_device_control();rt_spidev_device_init()。

    在确保了spi_core.c,spi_dev.c和spi.h这三个源文件在MDK工程内之后,接着往下走。

    二、底层硬件驱动

    在spi_hard.c中实现configure和xfer函数(默认没有使用DMA):

    static struct rt_spi_ops stm32_spi_ops =
    {
        configure,
        xfer
    };

    然后,向RT-thread注册spi总线:

    struct stm32_spi_bus
    {
        struct rt_spi_bus parent;
        
        SPI_TypeDef * SPI;
        
    #ifdef SPI_USE_DMA
        DMA_Stream_TypeDef * DMA_Stream_TX;
        uint32_t DMA_Channel_TX;
    
        DMA_Stream_TypeDef * DMA_Stream_RX;
        uint32_t DMA_Channel_RX;
    
        uint32_t DMA_Channel_TX_FLAG_TC;
        uint32_t DMA_Channel_RX_FLAG_TC;
    #endif /* #ifdef SPI_USE_DMA */    
    };
    
    struct stm32_spi_cs
    {
        GPIO_TypeDef * GPIOx;
        uint16_t GPIO_Pin;
    };
    rt_err_t stm32_spi_register(SPI_TypeDef * SPI,
                                struct stm32_spi_bus * stm32_spi,
                                const char * spi_bus_name)
    {
        if(SPI == SPI1)
        {
            stm32_spi->SPI = SPI1;
                RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);//84MHZ
                
    #ifdef SPI_USE_DMA
            RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
            /* DMA2_Stream0 DMA_Channel_3 : SPI1_RX ; DMA2_Stream2 DMA_Channel_3 : SPI1_RX */
            stm32_spi->DMA_Stream_RX = DMA2_Stream0;
            stm32_spi->DMA_Channel_RX = DMA_Channel_3;
            stm32_spi->DMA_Channel_RX_FLAG_TC = DMA_FLAG_TCIF0;
            /* DMA2_Stream3 DMA_Channel_3 : SPI1_TX ; DMA2_Stream5 DMA_Channel_3 : SPI1_TX */   
            stm32_spi->DMA_Stream_TX = DMA2_Stream3;
            stm32_spi->DMA_Channel_TX = DMA_Channel_3;
            stm32_spi->DMA_Channel_TX_FLAG_TC = DMA_FLAG_TCIF3;
    #endif        
        }
        else if(SPI == SPI2)
        {
          stm32_spi->SPI = SPI2;
                RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);//42MHZ
                
    #ifdef SPI_USE_DMA
            RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
            /* DMA1_Stream3 DMA_Channel_0 : SPI2_RX */
            stm32_spi->DMA_Stream_RX = DMA1_Stream3;
            stm32_spi->DMA_Channel_RX = DMA_Channel_0;
            stm32_spi->DMA_Channel_RX_FLAG_TC = DMA_FLAG_TCIF3;
            /* DMA1_Stream4 DMA_Channel_0 : SPI2_TX */
            stm32_spi->DMA_Stream_TX = DMA1_Stream4;
            stm32_spi->DMA_Channel_TX = DMA_Channel_0;
            stm32_spi->DMA_Channel_TX_FLAG_TC = DMA_FLAG_TCIF4;
    #endif       
        }
        else if(SPI == SPI3)
        {
            stm32_spi->SPI = SPI3;
                RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);//42MHZ
                
    #ifdef SPI_USE_DMA
                    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
                    /* DMA1_Stream2 DMA_Channel_0 : SPI3_RX ; DMA1_Stream0 DMA_Channel_0 : SPI3_RX */
                    stm32_spi->DMA_Stream_RX = DMA1_Stream2;
                    stm32_spi->DMA_Channel_RX = DMA_Channel_0;
                    stm32_spi->DMA_Channel_RX_FLAG_TC = DMA_FLAG_TCIF2;
                    /* DMA1_Stream5 DMA_Channel_0 : SPI3_TX ; DMA1_Stream7 DMA_Channel_0 : SPI3_TX */
                    stm32_spi->DMA_Stream_TX = DMA1_Stream5;
                    stm32_spi->DMA_Channel_TX = DMA_Channel_0;
                    stm32_spi->DMA_Channel_TX_FLAG_TC = DMA_FLAG_TCIF5;
    #endif        
        }
        else
        {
            return RT_ENOSYS;
        }
    
        return rt_spi_bus_register(&stm32_spi->parent, spi_bus_name, &stm32_spi_ops);
    }

    最后,进行spi硬件初始化,并挂载spi设备到已注册的spi总线。

    int rt_hw_spi1_init(void)
    {
        /* register SPI bus */
        static struct stm32_spi_bus stm32_spi;             //it must be add static
        
        /* SPI1 configure */
        {
            GPIO_InitTypeDef GPIO_InitStructure;
    
            /* Enable GPIO Periph clock */
            RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA , ENABLE);
            
            GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);
            GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1);
            GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1);
    
            GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;
            GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
            GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
            GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL; 
    
            /* Configure SPI1 pins */
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
            GPIO_Init(GPIOA, &GPIO_InitStructure);
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
            GPIO_Init(GPIOA, &GPIO_InitStructure);
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
            GPIO_Init(GPIOA, &GPIO_InitStructure);
        } /* SPI1 configuration */
    
        /* register SPI1 to stm32_spi_bus */
        stm32_spi_register(SPI1, &stm32_spi, "spi1");
    
        /* attach spi10 */
        {
            static struct rt_spi_device rt_spi_device_10;    //it must be add static
            static struct stm32_spi_cs  stm32_spi_cs_10;     //it must be add static
            
            stm32_spi_cs_10.GPIOx    = GPIOE;
            stm32_spi_cs_10.GPIO_Pin = GPIO_Pin_3;
            
            RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
    
        GPIO_InitTypeDef GPIO_InitStructure;
            GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
            GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
            GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
            GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;
            GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_3;
            GPIO_Init(GPIOE, &GPIO_InitStructure);
            GPIO_SetBits(GPIOE, GPIO_Pin_3);
            
            rt_spi_bus_attach_device(&rt_spi_device_10, "spi10", "spi1", (void*)&stm32_spi_cs_10);//set spi_device->bus
            /* config spi */
            {
                struct rt_spi_configuration cfg;
                cfg.data_width = 8;
                cfg.mode = RT_SPI_MODE_3 | RT_SPI_MSB; /* SPI Compatible Modes 3 and SPI_FirstBit_MSB in lis302dl datasheet */
                
                //APB2=168M/2=84M, SPI1 = 84/2,4,8,16,32 = 42M, 21M, 10.5M, 5.25M, 2.625M ...
                cfg.max_hz = 2625000; /* SPI_BaudRatePrescaler_16=84000000/16=5.25MHz. The max_hz of lis302dl is 10MHz in datasheet */ 
                rt_spi_configure(&rt_spi_device_10, &cfg);
            } /* config spi */    
        } /* attach spi10 */    
        
        return 0;
    }
    INIT_BOARD_EXPORT(rt_hw_spi1_init);//rt_hw_spi1_init will be called in rt_components_board_init()

    三、SPI设备初始化

    这里以lis302dl三轴加速度计为例:

    static rt_err_t lis302dl_init(const char * spi_device_name)
    {
      rt_uint8_t chip_id, ctrl, temp;
        
      spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);    
      if(spi_device == RT_NULL)
      {
         rt_kprintf("
    spi_device %s for lis302dl not found!
    ", spi_device_name);
         return -RT_ENOSYS;
      }
        
    //  /* If not use rt_device_write or rt_device_read, then it's no necessary to rt_device_open */
    //    /* oflag has no meaning for spi device , so set to RT_NULL */
    //    if(rt_device_open(&spi_device->parent, RT_NULL) != RT_EOK)
    //    {
    //        rt_kprintf("
    spi_device %s for lis302dl opened failed!
    ", spi_device_name);
    //        return -RT_EEMPTY;
    //    }
        
      LIS302DL_InitTypeDef  LIS302DL_InitStruct;
      LIS302DL_FilterConfigTypeDef LIS302DL_FilterStruct;    
      /* Set configuration of LIS302DL*/
      LIS302DL_InitStruct.Output_DataRate = LIS302DL_DATARATE_100;
      LIS302DL_InitStruct.Power_Mode      = LIS302DL_LOWPOWERMODE_ACTIVE;
      LIS302DL_InitStruct.Full_Scale      = LIS302DL_FULLSCALE_2_3;
      LIS302DL_InitStruct.Self_Test       = LIS302DL_SELFTEST_NORMAL;
      LIS302DL_InitStruct.Axes_Enable     = LIS302DL_XYZ_ENABLE;
      LIS302DL_Init(&LIS302DL_InitStruct);    
      /* MEMS High Pass Filter configuration */
      LIS302DL_FilterStruct.HighPassFilter_Data_Selection   = LIS302DL_FILTEREDDATASELECTION_OUTPUTREGISTER;
      LIS302DL_FilterStruct.HighPassFilter_Interrupt        = LIS302DL_HIGHPASSFILTERINTERRUPT_1_2;
      LIS302DL_FilterStruct.HighPassFilter_CutOff_Frequency = LIS302DL_HIGHPASSFILTER_LEVEL_1;    
      LIS302DL_FilterConfig(&LIS302DL_FilterStruct);
    
      /* not use internal high pass filter and INT2 */
      ctrl=0x04;//enable INT1 Data ready interrupt; interrupt active high; pull-push;
      LIS302DL_Write(&ctrl, LIS302DL_CTRL_REG3_ADDR, 1);
      LIS302DL_Read(&temp, LIS302DL_CTRL_REG3_ADDR, 1);
      if(temp == ctrl)
          rt_kprintf("the LIS302DL_CTRL_REG3_ADDR(value 0x%02x) verify passed!
    ", temp);
      else
          rt_kprintf("the LIS302DL_CTRL_REG3_ADDR(value 0x%02x) verify failed!
    ", temp);
            
      /* Required delay for the MEMS Accelerometre: Turn-on time = 3/Output data Rate = 3/100 = 30ms in datasheet */
      //rt_thread_delay(30);
      extern void stm32_mdelay(rt_uint32_t ms);
      stm32_mdelay(30);    
    
      /* power_mode is active */    
      LIS302DL_Read(&chip_id, LIS302DL_WHO_AM_I_ADDR, 1);
      rt_kprintf("(chip_id of lis302dl is 0x%02x)", chip_id); 
        
      return 0;
    }
    
    int rt_lis302dl_init(void)
    {
      rt_sem_init(&sem_lis302dl, "lis302dl", 0, RT_IPC_FLAG_FIFO);
        
      lis302dl_interrupt_int1();
        
      lis302dl_init("spi10");
        
      return 0;
    }
    INIT_APP_EXPORT(rt_lis302dl_init);

    注意事项:

    1、若需要使用rt_device_read()或rt_device_write()函数,则必须先调用rt_device_open()打开spi设备,保证该设备的ref_count大于0。硬件初始化函数中不需要调用rt_device_open()打开spi总线,因为在rt_spi_bus_attach_device()函数中没有初始化bus->owner,从而会导致调用_spi_bus_device_read()或_spi_bus_device_write()时“RT_ASSERT(bus->owner != RT_NULL);”断言语句进入死循环。而 _spidev_device_read()或_spidev_device_write()中断言语句“RT_ASSERT(device->bus != RT_NULL);”正常通过。

    2、在使用SPI设备驱动操作数字芯片的寄存器时,需谨慎使用rt_device_read()和rt_device_write()函数。因为根据spi读写时序,spi读写一次最少要连续操作2个字节数据(第一个为寄存器地址值,第二个为待读取或待写入的字节数据),并且在这2个字节数据之间CS信号不能拉高,而rt_device_read()和rt_device_write()函数仅操作一个字节后,cs信号拉高,导致字节数据不能正常读取或写入相应寄存器。所以,一般情况下在SPI工作在全双工模式时,读写数字芯片寄存器的函数中直接使用spi_core.c中的rt_spi_transfer()、rt_spi_send_then_recv()、rt_spi_send_then_send()三个函数,如下所示:

    void LIS302DL_Write(rt_uint8_t* pBuffer, rt_uint8_t WriteAddr, rt_uint16_t NumByteToWrite)
    {
        /* Configure the MS bit: 
           - When 0, the address will remain unchanged in multiple read/write commands.
           - When 1, the address will be auto incremented in multiple read/write commands.
      */
      if(NumByteToWrite > 0x01)
      {
        WriteAddr |= (rt_uint8_t)MULTIPLEBYTE_CMD;
      }
        
        /* the CS can't pull up between &WriteAddr and pBuffer */
      //rt_device_write(&spi_device->parent, RT_NULL, &WriteAddr, 1);
      //rt_device_write(&spi_device->parent, RT_NULL, pBuffer, NumByteToWrite);
        rt_spi_send_then_send(spi_device, &WriteAddr, 1, pBuffer, NumByteToWrite);// transfer NumByteToWrite+1 bytes
    }
    
    void LIS302DL_Read(rt_uint8_t* pBuffer, rt_uint8_t ReadAddr, rt_uint16_t NumByteToRead)
    {    
        /* Configure the MS bit: 
           - When 0, the address will remain unchanged in multiple read/write commands.
           - When 1, the address will be auto incremented in multiple read/write commands.
      */
        if(NumByteToRead > 0x01)
      {
        ReadAddr |= (rt_uint8_t)(READWRITE_CMD | MULTIPLEBYTE_CMD);
      }
      else
      {
        ReadAddr |= (rt_uint8_t)READWRITE_CMD;
      }
        
        /* the CS can't pull up between &WriteAddr and pBuffer */
        //rt_device_write(&spi_device->parent, RT_NULL, &ReadAddr, 1);
        //rt_device_read(&spi_device->parent, RT_NULL, pBuffer, NumByteToRead);    
        rt_spi_send_then_recv(spi_device, &ReadAddr, 1, pBuffer, NumByteToRead);// transfer NumByteToRead+1 bytes
    }

    3、对于可读取寄存器值的数字芯片,在写入字节数据后可通过读取相同寄存器,判断读出的值与写入的值是否一致,从而判断寄存器写操作是否正确,如下:

    void LIS302DL_Init(LIS302DL_InitTypeDef *LIS302DL_InitStruct)
    {
        rt_uint8_t ctrl = 0x00;
        
        /* Configure MEMS: data rate, power mode, full scale, self test and axes */
      ctrl = (rt_uint8_t) (LIS302DL_InitStruct->Output_DataRate | LIS302DL_InitStruct->Power_Mode | 
                        LIS302DL_InitStruct->Full_Scale | LIS302DL_InitStruct->Self_Test | 
                        LIS302DL_InitStruct->Axes_Enable);
        
        /* Write value to MEMS CTRL_REG1 regsister */
      LIS302DL_Write(&ctrl, LIS302DL_CTRL_REG1_ADDR, 1);
    
        rt_uint8_t temp = 0x00;
        LIS302DL_Read(&temp,  LIS302DL_CTRL_REG1_ADDR, 1);
        if(temp == ctrl)
            rt_kprintf("
    the LIS302DL_CTRL_REG1_ADDR(value 0x%02x) verify passed!
    ", temp);
        else
            rt_kprintf("
    the LIS302DL_CTRL_REG1_ADDR(value 0x%02x) verify failed!
    ", temp);
    }
  • 相关阅读:
    openpyxl模块介绍 ——读取excel表格
    openpyxl模块介绍 ——创建excel表格 ——并写入数据
    csv文件——读和遍历csv文件
    openpyxl模块介绍 ——原有excel表格中创建sheet ——并写入数据
    遍历目录
    c# 反转,新手看
    缩写
    对象、类和结构
    c# Outlook 收发邮件
    C#中接口的作用
  • 原文地址:https://www.cnblogs.com/King-Gentleman/p/4657844.html
Copyright © 2011-2022 走看看