zoukankan      html  css  js  c++  java
  • FFT板子(大数乘法)

    #include<iostream>
    #include<sstream>
    #include<fstream>
    #include<vector>
    #include<list>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<map>
    #include<set>
    #include<bitset>
    #include<algorithm>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cctype>
    #include<cmath>
    #include<ctime>
    #include<iomanip>
    using namespace std;
    const double eps(1e-8);
    typedef long long lint;
     
    const double PI = acos(-1.0);
     
    struct Complex
    {
        double real, image;
        Complex(double _real, double _image)
        {
            real = _real;
            image = _image;
        }
        Complex(){}
    };
     
    Complex operator + (const Complex &c1, const Complex &c2)
    {
        return Complex(c1.real + c2.real, c1.image + c2.image);
    }
     
    Complex operator - (const Complex &c1, const Complex &c2)
    {
        return Complex(c1.real - c2.real, c1.image - c2.image);
    }
     
    Complex operator * (const Complex &c1, const Complex &c2)
    {
        return Complex(c1.real*c2.real - c1.image*c2.image, c1.real*c2.image + c1.image*c2.real);
    }
     
    int rev(int id, int len)
    {
        int ret = 0;
        for(int i = 0; (1 << i) < len; i++)
        {
            ret <<= 1;
            if(id & (1 << i)) ret |= 1;
        }
        return ret;
    }
     
    Complex A[140000];
    void FFT(Complex* a, int len, int DFT)//对a进行DFT或者逆DFT, 结果存在a当中
    {
        //Complex* A = new Complex[len]; 这么写会爆栈
        for(int i = 0; i < len; i++)
            A[rev(i, len)] = a[i];
        for(int s = 1; (1 << s) <= len; s++)
        {
            int m = (1 << s);
            Complex wm = Complex(cos(DFT*2*PI/m), sin(DFT*2*PI/m));
            for(int k = 0; k < len; k += m)
            {
                Complex w = Complex(1, 0);
                for(int j = 0; j < (m >> 1); j++)
                {
                    Complex t = w*A[k + j + (m >> 1)];
                    Complex u = A[k + j];
                    A[k + j] = u + t;
                    A[k + j + (m >> 1)] = u - t;
                    w = w*wm;
                }
            }
        }
        if(DFT == -1) for(int i = 0; i < len; i++) A[i].real /= len, A[i].image /= len;
        for(int i = 0; i < len; i++) a[i] = A[i];
        return;
    }
     
    char numA[50010], numB[50010];//以每一位为系数, 那么多项式长度不超过50000
    Complex a[140000], b[140000];//对应的乘积的长度不会超过100000, 也就是不超过(1 << 17) = 131072
    int ans[140000];
    int main()
    {
        while(~scanf("%s", numA))
        {
            int lenA = strlen(numA);
            int sa = 0;
            while((1 << sa) < lenA) sa++;
            scanf("%s", numB);
            int lenB = strlen(numB);
            int sb = 0;
            while((1 << sb) < lenB) sb++;
            //那么乘积多项式的次数不会超过(1 << (max(sa, sb) + 1))
            int len = (1 << (max(sa, sb) + 1));
            for(int i = 0; i < len; i++)
            {
                if(i < lenA) a[i] = Complex(numA[lenA - i - 1] - '0', 0);
                else a[i] = Complex(0, 0);
                if(i < lenB) b[i] = Complex(numB[lenB - i - 1] - '0', 0);
                else b[i] = Complex(0, 0);
            }
            FFT(a, len, 1);
            FFT(b, len, 1);//把A和B换成点值表达
            for(int i = 0; i < len; i++)//做点值表达的成乘法
                a[i] = a[i]*b[i];
            FFT(a, len, -1);//逆DFT换回原来的系数, 虚部一定是0
            for(int i = 0; i < len; i++)
                ans[i] = (int)(a[i].real + 0.5);//取整误差的处理
            for(int i = 0; i < len - 1; i++)//进位问题
            {
                ans[i + 1] += ans[i] / 10;
                ans[i] %= 10;
            }
            bool flag = 0;
            for(int i = len - 1; i >= 0; i--)//注意输出格式的调整即可
            {
                if(ans[i]) printf("%d", ans[i]), flag = 1;
                else if(flag || i == 0) printf("0");
            }
            putchar('
    ');
        }
        return 0;
    }
  • 相关阅读:
    题型:系统可靠性
    计算机基础——网络存储
    传输层——TCP的流量控制服务
    传输层——UDP和TCP的对比
    配置——VLAN
    项目管理——PERT图
    从“派生类不能访问基类对象的protected成员”开始讨论各类成员的“可见性”
    cin.clear()和cin.sync
    华为编程大赛——路径查找
    华为编程大赛——求表达式的值
  • 原文地址:https://www.cnblogs.com/King-of-Dark/p/12944206.html
Copyright © 2011-2022 走看看