题意:小A从左上角走到右下角,每个格子都有一个价值,经过这个格子就把价值拿走,每次只能往下或往右走,问你走k次最多能拿多少价值的东西。
思路:这里有一个限制条件就是经过之后要把东西拿走,也就是每一格的价值只能拿一次,这也能用拆点。我们把一个点拆成两个,建两条边,一条流量1费用-cost,另一条流量k-1,费用0,这样就完成了。
代码:
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define ll long long
const int maxn = 20000+5;
const int maxm = 100000+5;
const int MOD = 1e7;
const int INF = 0x3f3f3f3f;
using namespace std;
struct Edge{
int to,next,cap,flow,cost;
}edge[maxm];
int head[maxn],tot;
int pre[maxn],dis[maxn];
bool vis[maxn];
int N,M;
void init(){
N = maxn;
tot = 0;
memset(head,-1,sizeof(head));
}
void addEdge(int u,int v,int cap,int cost){
edge[tot].to = v;
edge[tot].cap = cap; //容量
edge[tot].flow = 0;
edge[tot].cost = cost;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].to = u;
edge[tot].cap = 0;
edge[tot].flow = 0;
edge[tot].cost = -cost;
edge[tot].next = head[v];
head[v] = tot++;
}
bool spfa(int s,int t){
queue<int> q;
for(int i = 0;i < N;i++){
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u];i != -1;i = edge[i].next){
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost){
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
return pre[t] != -1;
}
int MCMF(int s,int t,int &cost){
int flow = 0;
cost = 0;
while(spfa(s,t)){
int MIN = INF;
for(int i = pre[t];i != -1;i = pre[edge[i^1].to]){
if(MIN > edge[i].cap - edge[i].flow){
MIN = edge[i].cap - edge[i].flow;
}
}
for(int i = pre[t];i != -1; i = pre[edge[i^1]. to]){
edge[i]. flow += MIN;
edge[i^1]. flow -= MIN;
cost += edge[i]. cost * MIN;
}
flow += MIN;
}
return flow;
}
int mp[55][55],n;
int lp(int i,int j){ return n*(i - 1) + j; };
int rp(int i,int j){ return n*n + n*(i - 1) + j; }
int main(){
int k;
while(scanf("%d%d",&n,&k) != EOF){
init();
for(int i = 1;i <= n;i++){
for(int j = 1;j <= n;j++){
scanf("%d",&mp[i][j]);
addEdge(lp(i,j),rp(i,j),1,-mp[i][j]);
addEdge(lp(i,j),rp(i,j),k - 1,0);
if(i < n)
addEdge(rp(i,j),lp(i + 1,j),k,0);
if(j < n)
addEdge(rp(i,j),lp(i,j + 1),k,0);
}
}
addEdge(0,lp(1,1),k,0);
addEdge(rp(n,n),rp(n,n) + 1,k,0);
int cost;
MCMF(0,rp(n,n) + 1,cost);
printf("%d
",-cost);
}
return 0;
}