题意:求乘法逆元最小正正数解
思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x。那么通过EXGcd得到特解x1,最小正解x1 = x1 % m,如果x1 <=0,x1 += m,注意m是负数时取绝对值,因为是正解,所以不能用(x1%m+m)%m。
代码:
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define LS(n) node[(n)].ch[0] #define RS(n) node[(n)].ch[1] using namespace std; typedef long long ll; const int INF = 0x3f3f3f3f; const int maxn = 32767 + 10; ll ex_gcd(ll a, ll b, ll &x, ll &y){ ll d, t; if(b == 0){ x = 1; y = 0; return a; } d = ex_gcd(b, a%b, x, y); t = x-a/b*y; x = y; y = t; return d; } int main(){ ll a, m, x, y, T; scanf("%lld", &T); while(T--){ scanf("%lld%lld", &a, &m); ll d = ex_gcd(a, m, x, y); if(1 % d != 0){ printf("Not Exist "); } else{ x = x % m; if(x <= 0) x += m; printf("%lld ", x); } } return 0; }