【原题在此】
Let us consider a game on a rectangular board m x 1 consisting of m elementary squares numbered successively from 1 to m. There are n pawns on the board, each on a distinct square. None of them occupies the square with number m. Each single move in the is the following action: the moving player picks a pawn from any occupied square chosen at will and places it on the first unoccupied square with a larger number. The two players make moves in turn. The one who puts a pawn on the last square, i.e. the square with a number m, wins. In the case presented in the figure (m = 7), a player is allowed to move a pawn from square no. 2 to 4, from square no. 3 to 4 or from square no. 6 to 7. The latter ends the game. We say a player's move is winning if after making it he can win the game, no matter what moves his opponent makes. Task reads the size of a board and the initial setup of pawns from the standard input, Input
Example 5 2 the correct answer is: 1 For the following input data: 5 2 the correct answer is: 0 |
【题目翻译】
在一个有M个格子的长条上,从左到右编号1到M。一些格子上方有一些棋子,一个格子只能放一个棋子,第M格没有放棋子。两个人轮流操作,每次操作是选择一枚棋子往右放,放在它右边距离它最近的一个空格里。最先把棋子放在第M格的人胜利。问先手必胜的第一步策略一共有多少种?
上图中,当前玩家可以将2中的硬币移动到4,或3中的硬币到4,或6中的硬币到7。
【输入格式】
第一行输入m,n 。第二行n个数分别表示每一枚硬币所在的位置。
【输出格式】
进一行,保证先行者胜利的策略数。
分析:
目测这题我自己是想不出来的了,原来可以转化为阶梯模型,也是听了scy讲了才知道~~
(转自:http://blog.sina.com.cn/s/blog_51cea4040100h0ab.html)
感觉博主很厉害很厉害,同时也是萌萌哒~~于是这题就转成了我们熟悉的阶梯模型了。
然后我开始打代码,打完之后,我的内心:
&&¥¥%%#这题好坑好坑好坑啊,各种情况都要考虑到才行。把这题转换成阶梯模型之后,偶数阶的棋子并不是没有用的!!对方案有巨大贡献啊!!可以把偶数阶的扫下去相当于奇数阶的增加了!!还有各种特判,都晕了~(数据大的直接不管了,好麻烦~~)
呵呵~
代码在这里,数据大的过不了TAT:
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 #include<algorithm> 6 #include<queue> 7 using namespace std; 8 #define Maxn 10000100 9 10 int a[Maxn],c[Maxn]; 11 bool b[Maxn]; 12 13 int main() 14 { 15 int m,n; 16 scanf("%d%d",&m,&n); 17 memset(b,0,sizeof(b)); 18 for(int i=1;i<=n;i++) 19 { 20 scanf("%d",&a[i]); 21 b[a[i]]=1; 22 } 23 if(b[m-1]==1) 24 { 25 int i; 26 int sum=0;for(i=m-1;i>=1;i--) if(!b[i]) break; 27 printf("%d ",m-1-i); 28 } 29 else 30 { 31 memset(c,0,sizeof(c)); 32 int sum=0,st; 33 for(st=m-2;b[st];st--); 34 for(int i=st;i>=1;i--) 35 { 36 if(b[i]==0) sum++; 37 else c[sum]++; 38 } 39 int ans=0; 40 for(int i=1;i<=sum;i+=2) ans^=c[i]; 41 if(ans==0) printf("0 "); 42 else 43 { 44 int mx=0; 45 for(int i=0;(1<<i)<=ans;i++) 46 if((1<<i)&ans) mx=(1<<i); 47 int h=0; 48 for(int i=1;i<=sum;i+=2) 49 if(c[i]&mx) h++; 50 for(int i=2;i<=sum;i+=2) 51 if(((ans^c[i-1])-c[i-1])>=0&&c[i]>=((ans^c[i-1])-c[i-1])) h++; 52 printf("%d ",h); 53 } 54 } 55 return 0; 56 }
2016-04-16 10:23:03