zoukankan      html  css  js  c++  java
  • HDU 1003

    Problem Description
    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
     
    Input
    The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
     
    Sample Input
    2
    5
    6 -1 5 4 -7
    7
    0 6 -1 1 -6 7 -5
     
    Sample Output
    Case 1: 14 1 4
     
     
    Case 2: 7 1 6
     
    【题意】 给n个数,求最大连续元素的和;并输出起点和终点。
    【分析】
      设d[i]为以第i个元素为终点的最大连续元素和。则
      状态转移方程:d[i] = d[i-1] > 0 ? d[i-1]+a[i] : a[i];
     
      思路应该比较好理解,如果d[i-1]<0, 那么无论a[i]为何值,其和总不如单独的a[i]大;反之如果d[i-1]>0, 那么无论a[i]为何值,其和总大于单独的a[i];
    【代码】  
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 #include<cstring>
     5 using namespace std;
     6 const int maxn = 100010;
     7 int n, a[maxn];
     8 int d[maxn];
     9 void dp()
    10 {
    11     memset(d, 0, sizeof(d));
    12     d[0] = a[0];
    13     for(int i = 1; i < n; i++)
    14     {
    15         if(d[i-1] > 0) d[i] = d[i-1]+a[i];
    16         else d[i] = a[i];
    17     }
    18     //cout << endl;
    19     int st = 0, en = 0;
    20     int max_ = d[0];
    21     for(int i = 1; i < n; i++)
    22     {
    23         if(d[i]>max_)
    24         {
    25             max_ = d[i];
    26             en = i;
    27         }
    28     }
    29     st = en;
    30     for(int j = en-1; j>=0; j--)
    31     {
    32         if(d[j] < 0) break;
    33         else st = j;
    34     }
    35     printf("%d %d %d
    ", max_, st+1, en+1);
    36 }
    37 
    38 int main()
    39 {
    40     int T; scanf("%d", &T);
    41     for(int kase = 0; kase < T; kase++)
    42     {
    43         scanf("%d", &n);
    44         for(int i = 0; i < n; i++)
    45             scanf("%d", &a[i]);
    46         if(kase) printf("
    ");
    47         printf("Case %d:
    ", kase+1);
    48         dp();
    49 
    50     }
    51     return 0;
    52 }
    View Code
      
  • 相关阅读:
    BZOJ 3997: [TJOI2015]组合数学 [偏序关系 DP]
    [Sdoi2017]新生舞会 [01分数规划 二分图最大权匹配]
    [Sdoi2017]相关分析 [线段树]
    [Sdoi2017]硬币游戏 [高斯消元 KMP]
    [Sdoi2017]序列计数 [矩阵快速幂]
    [Sdoi2017]树点涂色 [lct 线段树]
    [Sdoi2017]数字表格 [莫比乌斯反演]
    BZOJ 3160: 万径人踪灭 [fft manacher]
    Rabbitmq常见测试
    MQ(消息队列)功能介绍
  • 原文地址:https://www.cnblogs.com/LLGemini/p/4432506.html
Copyright © 2011-2022 走看看